Domination Number of Nagata Extension Ring

Abbas Shariatinia a,*, Rasoul Mojarad a

aDepartment of Science, Bushehr Branch, Islamic Azad University, Bushehr, Iran.

Received 12 March 2011; accepted 19 April 2012

Abstract

Let R be a commutative ring with $Z(R)$ the set of zero divisors. The total graph of R, denoted by $T(\Gamma(R))$, is the (undirected) graph with all elements of R as vertices, and two distinct vertices are adjacent if their sum is a zero divisor. For a graph $G = (V, E)$, a set S is a dominating set if every vertex in $V \setminus S$ is adjacent to a vertex in S. The domination number is equal $|S|$ where $|S|$ is minimum. For R-module M, an Nagata extension (idealization), denoted by $R(+M)$ is a ring with identity and for two elements $(r, m), (s, n)$ of $R(+M)$ we have $(r, m) + (s, n) = (r + s, m + n)$ and $(r, m)(s, n) = (rs, rn + sm)$. In this paper, we seek to determine the bound for the domination number of total graph $T(\Gamma(R(+M)))$.

Key words: Domination Number, Nagata Extention, Free Torsion R-Module, Commutative Ring

2010 AMS Mathematics Subject Classification : 16L99, 16D10

* Corresponding author’s E-mail: ashariatinia14@gmail.com
1 Introduction and Preliminaries

Let $G = (V, E)$ be a graph of order $|V| = n$. For any vertex $v \in V$, the open neighborhood of v is the set $N(v) = \{u \in V \mid uv \in E\}$ and the closed neighborhood of v is the set $N[v] = N(v) \cup \{v\}$. For a set $S \subseteq V$, the open neighborhood of S is $N(S) = \bigcup_{v \in S} N(v)$ and the closed neighborhood of S is $N[S] = N(S) \cup S$. A set $S \subseteq V$ is a dominating set if $N[S] = V$, or equivalently, every vertex in $V \setminus S$ is adjacent to at least one vertex in S. The domination number $\gamma(G)$ is the minimum cardinality of all dominating sets in G. A dominating set with cardinality $\gamma(G)$ is called a γ-set.

We assume throughout that all rings are commutative with $1 \neq 0$. Let R be a commutative ring with $T(R)$ its total quotient ring, $\text{Reg}(R)$ its set of regular elements, $\text{Z}(R)$ its set of zero divisors, and $\text{Nil}(R)$ its ideal of nilpotent elements. In [5], Anderson and Livingston introduced the zero-divisor graph of R, denoted by $\Gamma(R)$, as the (undirected) graph with vertices $\text{Z}(R)^* = \text{Z}(R) \setminus \{0\}$, the set of nonzero zero-divisors of R, and for distinct $x, y \in \text{Z}(R)^*$, the vertices x and y are adjacent if and only if $xy = 0$. This concept is due to Beck [9], who let all the elements of R be vertices and was mainly interested in colorings. For some other recent papers on zero-divisor graphs, see [2,5,7,8,10].

The total graph of R, denoted by $T(\Gamma(R))$, as the (undirected) graph with all elements of R as vertices, and for distinct $x, y \in R$, the vertices x and y are adjacent if and only if $x + y \in \text{Z}(R)$. Let $\text{Reg}(\Gamma(R))$ be the (induced) subgraph of $T(\Gamma(R))$ with vertices $\text{Reg}(R)$, let $\text{Z}(\Gamma(R))$ be the (induced) subgraph of $T(\Gamma(R))$ with vertices $\text{Z}(R)$, and let $\text{Nil}(\Gamma(R))$ be the (induced) subgraph of $T(\Gamma(R))$ (and $\text{Z}(\Gamma(R))$) with vertices $\text{Nil}(R)$.

Let G be a graph. We say that G is connected if there is a path between any two distinct vertices of G. For vertices x and y of G, we define $d(x, y)$ to be the length of a shortest path from x to y ($d(x, x) = 0$ and $d(x, y) = \infty$ if there is no such path), see [1,3,4].

Recall that for an R-module M, the idealization of M over R is the commutative ring formed from $R \times M$ by defining addition and multipli-
cation as \((r, m) + (s, n) = (r + s, m + n)\) and \((r, m)(s, n) = (rs, rn + sm)\), respectively. A standard notation for this ”idealized ring” is \(R(+)M\); see [6] for basic properties of rings resulting from the idealization construction. The zero-divisor graph \(\Gamma(R(+)M)\) has recently been studied in [5] and [6].

2 Domination of idealization

Definition 2.1 Let \(R\) be a commutative ring and \(M\) be a \(R\)-module. Idealizer ring \(M\) in \(R\) is denoted by \(R(+)M\) and is defined with two actions addition and multiplication as follows:

\[\begin{align*}
&i) \quad (r_1, m_1) + (r_2, m_2) = (r_1 + r_2, m_1 + m_2) \\
&ii) \quad (r_1, m_1) \times (r_2, m_2) = (r_1r_2, r_1m_2 + r_2m_1)
\end{align*}\]

It is easy to see, \(R(+)M\) with two above actions is a commutative ring.

Definition 2.2 Let \(M\) be a \(R\)-module on commutative ring \(R\). A zero divisor of module \(M\) is defined as follows:

\[Z(M) = \{r \in R : \exists m \in M \text{ s.t. } rm = 0\}\]

Theorem 2.1 Let \(R\) be a commutative ring and \(M\) is a \(R\)-module. Then

\[Z(R(+)M) = Z(R) \times M \cup Z(M) \times M\]

Proof. Suppose \((r, m) \in Z(R(+)M)\), so there is a non-zero \((s, n) \in R(+)M\) such that \((r, m)(s, n) = 0\). Thus, \(rs = 0\) and \(rn + sm = 0\). Now if \(r \in Z(R)\), then the proof is complement. Otherwise \(s = 0\), so \(rn = 0\). Thus, \(r \in Z(M)\). Because \((s, n) \neq 0\) and \(s = 0\), so \(n \neq 0\). Therefore,

\[Z(R(+)M) \subseteq Z(R) \times M \cup Z(M) \times M\]

The proof of other side of inclusion is easy. \(\square\)
Lemma 2.1 Let x, y be adjacent in graph $T(\Gamma(R))$. Then the all members of A_x are adjacent with all members of A_y in graph $T(\Gamma(R(+)M))$, where $A_x = \{(x, m) : m \in M\}$

Proof. Suppose $(x, m) \in A_x$ and $(y, n) \in A_y$. Since x and y are adjacent in graph $T(\Gamma(R))$, so $x + y \in Z(R)$. Therefore, $(x, m) + (y, n) = (x + y, m + n) \in Z(R(+)M)$ and this completes the proof. \[
\]

Lemma 2.2 [12] Let $D = \{(x_i, m_i) : 1 \leq i \leq n\}$ be a set. Then the following are hold.

i) If D is a minimal dominating of $T(\Gamma(R(+)M))$, then for every i and j, $x_i \neq x_j$.

ii) If D is a total minimal dominating set of $T(\Gamma(R(+)M))$, then there is a total dominating set $D' = \{(y_i, n_i) : 1 \leq i \leq n\}$ such that for every $i \neq j$, $y_i \neq y_j$.

Theorem 2.2 [12] Let R be a commutative ring and M be a R–module. Then

$$\gamma(T(\Gamma(R))) \leq \gamma(T(\Gamma(R(+)M))).$$

If one of the following conditions are established:

i) M be a free torsion R–module.

ii) $R = Z(R) \cup U(R)$.

Theorem 2.3 [12] Let R be a commutative ring and M be a R–module. Then

$$\gamma_t(T(\Gamma(R(+)M))) \leq \gamma_t(T(\Gamma(R))).$$

Theorem 2.4 [12] Let R be a commutative ring and M be a R–module. Then

$$\gamma_t(T(\Gamma(R))) = \gamma_t(T(\Gamma(R(+)M))).$$

If one of the following conditions are established:

i) M be a free torsion R–module.

ii) $R = Z(R) \cup U(R)$.
Corollary 2.1 Let R be a finite non-local ring that is not isomorphic with $F \times F \times \cdots \times F$ such that $|F| = 2k + 1$ and k is odd. Also suppose M be a R–module. Then
\[\gamma(t(T(\Gamma(R)))) = \gamma(t(T(\Gamma(R(+)M)))) = \gamma(T(\Gamma(R(+)M))) = \gamma(T(\Gamma(R))) \]

Proof. The results are obtained using the theorems 2.1, 2.2 and 2.2. □

3 Domination and localization

Now, under the new conditions we reduce assumption and find a relation between the following statements.
\[\gamma_t(T(\Gamma(R))), \gamma_t(T(\Gamma(R(+)M))) \]

Theorem 3.1 Let R be a local ring with maximal ideal m and $|\frac{R}{m}| = k$. Then $\gamma(T(\Gamma(R))) = k$. Moreover, if $\text{char}(R) \neq 2$, then $\gamma_t(T(\Gamma(R))) = k$.

Proof. Suppose $D = \{\overline{x_1}, \overline{x_2}, \ldots, \overline{x_n}\}$ is a set of cosets of m. We show that $D = \{x_1, x_2, \ldots, x_n\}$ is a dominator set of total graph on R.

Let $x \in R$. Then for one index $1 \leq i \leq k$ we have $\overline{x_i} = -\overline{x}$. Equivalently, $x_i + m = -x + m$. Therefore, $x_i + x \in m$. Since R is local, so $m = Z(R)$, i.e. x and x_i are adjacent. Thus, D dominate total graph $T(\Gamma(R))$ and $\gamma(T(\Gamma(R))) \leq k$.

Now, if the set like $D' = \{y_1, y_2, \ldots, y_{k-1}\}$ dominate total graph $T(\Gamma(R))$, then for two distinct index i, j, x_i and x_j dominate by only one member of D' like y_i. Thus, $x_j + y_i = m_j$ and $x_i + y_i = m_i$ are belong to $m = Z(R)$, as $x_i - x_j = m_i + m_j \in m$, and this is equivalent to $\overline{x_i} = \overline{x_j}$ that is Contradictory with D. Therefore, $\gamma(T(\Gamma(R))) = k$.

Finally, if $\text{char}(R) \neq 2$, then for every i there is one j such that $-\overline{x_i} = \overline{x_j}$. So
\[-x_i + m = x_j + m \Rightarrow x_i + x_j \in m \]
Thats mean the members of D dominate all members of $T(\Gamma(R))$, thus,

$$\gamma_t(T(\Gamma(R))) = \gamma(T(\Gamma(R))) = k.$$

\[\square\]

Definition 3.1 We say that the ring is reduced if there is any non-zero nilpotent member. Equivalently, R is a reduced ring if $x^2 = 0$, then $x = 0$.

Lemma 3.1 [12] If R is a finite reduced ring, then $R = \prod_{i=1}^{n} F_i$, where for every $1 \leq i \leq n$, F_i is a finite field.

Theorem 3.2 [12] Let R be a ring but it is not field. Also, suppose $R = \prod_{i=1}^{n} F_i$ ($n \geq 2$), where F_i are field and $|F_1| \leq |F_2| \leq \cdots \leq |F_n|$. Then

$$\gamma(T(\Gamma(R))) = \begin{cases} |F_1| - 1 & R = F_1^2 \text{ and } |R| \text{ is odd} \\ |F_1| & \text{otherwise} \end{cases}$$

moreover, for every ring we have $\gamma_t(T(\Gamma(R))) = |F_1|$.

Theorem 3.3 [11] Let $R = R_1 \times R_2 \times \cdots \times R_n$, where for every $1 \leq i \leq n$, (R_i, m_i) be local rings and $\frac{R_1}{m_1} = \min \left\{ \frac{R_i}{m_i} : 1 \leq i \leq n \right\}$. If $n \geq 2$ and for at least one $1 \leq k \leq n$, ring R_k is not field, then

$$\gamma(T(\Gamma(R))) = \gamma_t(T(\Gamma(R))) = \left\lfloor \frac{R_k}{m_k} \right\rfloor.$$

Lemma 3.2 Let R be a commutative ring and p be a prime ideal. Then $Z(R_p) = (Z(R))_p$.

Proof. Let $0 \neq \frac{y}{t} \in Z(R_p)$, so there is $\frac{x}{s} \in R_p$ that $\frac{x}{s} \cdot \frac{y}{t} = 0$. Thus, there is $r \in R - p$ such that $rxy = 0$, but $x \neq 0$ and $ry \neq 0$. Otherwise, $\frac{y}{t} = 0$ and $\frac{x}{s} = 0$, that is a contradiction. Therefore, $x \in Z(R)$ and $\frac{y}{t} \in (Z(R))_p$. So we have

$$z(R_p) \subseteq (Z(R))_p$$

On the other, let $0 \neq \frac{y}{t} \in (Z(R))_p$, then $x \in Z(R)$ and $s \in R_p$. So there is $0 \neq \frac{t}{s} \in (Z(R))_p$, thus $x \in Z(R)$ and $s \in R_p$. So there is $0 \neq y \in R$ that $xy = 0$. Now we have $\frac{x}{s} \cdot \frac{y}{t} = \frac{xy}{st} = 0$. We show $\frac{y}{t} \neq 0$. Otherwise there is $r \in R - p$ such that $ry = 0$. Since p is prim ideal, so
\[y \in p, \text{ but } x(r - y) = 0 \text{ and } r - y \in R - p. \text{ Thus,} \]
\[
\frac{x}{s} = \frac{x}{s} \cdot \frac{r - y}{r - y} = \frac{x(r - y)}{s(r - y)} = \frac{0}{s(r - y)} = 0,
\]
that is a contradiction. Therefore, \(\frac{y}{1} \neq 0 \) and this indicates that \(\frac{y}{s} \in Z(R) \) and the proof is complete. \(\square \)

Lemma 3.3 If \((R, m)\) is local ring, then \(\gamma(T(\Gamma(R))) = \gamma(T(\Gamma(\frac{R}{m}))) \).

Proof. Let \(S = \{x_1, x_2, \ldots, x_k\} \) be a \(\gamma \)-set for \(T(\Gamma(R)) \). Then suppose \(S = \{y_1, y_2, \ldots, y_k\} \) and show that this set dominate graph \(T(\Gamma(\frac{R}{m})) \). An arbitrary element in \(\frac{R}{m} \) is form \(\bar{y} \) which \(y \in R \), so there is \(x_j \in S \) such that \(y + x_j \in Z(R) \) and \(y + x_j = y + \bar{x}_j = 0 \). Therefore, \(\bar{y} \) is adjacent \(\bar{x}_j \), i.e. \(S \) dominate \(T(\Gamma(\frac{R}{m})) \), thus,
\[
\gamma(T(\Gamma(R))) \geq \gamma(T(\Gamma(\frac{R}{m}))).
\]
The other side of the inequality is proved to be the same and the equality is established. \(\square \)

Theorem 3.4 \([6]\) Let \(R \) be a commutative ring, \(I \) a ideal, \(M \) a \(R \)-module and \(N \) be a submodule of \(M \). Then \(I(+)M \) is a ideal of ring \(R(+)M \) iff \(IM \subseteq N \). When \(I(+)M \) is a ideal, then \(\frac{M}{N} \) is a \(\frac{R}{I} \)-module and \(\frac{R(+)M}{I(+)N} = \frac{R}{I}M/I\frac{M}{N} \).

Theorem 3.5 \([6]\) Let \(R \) be a commutative ring and \(M \) be a \(R \)-module. Maximal ideal of \(R(+)M \) is \(m(+)M \) if \(m \) is maximal ideal of \(R \). Also, ring \(R(+)M \) is quasi-local iff \(R \) be a quasi-local ring. Moreover, \(J(R(+)M) = J(R)(+)M \).

Theorem 3.6 Let \(R \) be a local ring that not field and \(M \) be a \(R \)-module. Then \(\gamma_{\ell}(T(\Gamma(R))) = \gamma_{\ell}(T(\Gamma(R(+)M))) \).

Proof. Let \(m \) be a maximal ideal of \(R \). Then by Theorem 3.5, \(m(+)M \) is a maximal ideal of \(R(+)M \). Also, by Theorem 3.4 we have:
\[
\frac{R(+)M}{m(+)M} = \frac{R}{m} \frac{M}{M} = \frac{R}{m} = \frac{R}{m}.
\]
So $R(+)M$ is local ring. Now, using Lemma 3.3, the proof is completed. \(\Box\)

Theorem 3.7 Let R be a non-local ring and p be a ideal of R. Suppose R_p is a local ring of R with maximal ideal pR_p. Then $\gamma_l(T(\Gamma(R))) \leq \gamma_l(T(\Gamma(R_p)))$.

Proof. Let $D = \left\{ \frac{x_1}{s_1}, \frac{x_2}{s_2}, \ldots, \frac{x_n}{s_n} \right\}$ be a total dominating set for R_p. Without reducing the whole problem can be set D as follows to preserve the domination property:

$$D = \left\{ \frac{x_1}{s}, \frac{x_2}{s}, \ldots, \frac{x_n}{s} \right\}$$

where $s = s_1s_2\ldots s_n$.

We put $y_i = \frac{s_i}{s}x_i$, where $s_i = s_1s_2\ldots s_{i-1}s_{i+1}\ldots s_n$. So we have $\frac{x_i}{s_i} = \frac{y_i}{s}$.

Now, we show that $S = \{y_1, y_2, \ldots, y_n\}$ is a total dominating set for R. Suppose $x \in R$. Then $\frac{x}{s} \in R_p$. So there is $y \in \mathbb{Z}(R_p)$ such that $\frac{x+y}{s} = \frac{x}{s} + \frac{y}{s} \in Z(R_p) = (z(R))_p$, as $x + y \in Z(R)$. Therefore, S is a total dominating set for R and the result follows. \(\Box\)

Acknowledgment

This research is supported by the research council of the Islamic Azad University of Bushehr.

References

