Baloui Jamkhaneh, E., Saeidifar, A. (2018). New Generalized Interval Valued Intuitionistic Fuzzy Numbers. Theory of Approximation and Applications, 12(1), 43-64.

Ezzatallah Baloui Jamkhaneh; A. Saeidifar. "New Generalized Interval Valued Intuitionistic Fuzzy Numbers". Theory of Approximation and Applications, 12, 1, 2018, 43-64.

Baloui Jamkhaneh, E., Saeidifar, A. (2018). 'New Generalized Interval Valued Intuitionistic Fuzzy Numbers', Theory of Approximation and Applications, 12(1), pp. 43-64.

Baloui Jamkhaneh, E., Saeidifar, A. New Generalized Interval Valued Intuitionistic Fuzzy Numbers. Theory of Approximation and Applications, 2018; 12(1): 43-64.

New Generalized Interval Valued Intuitionistic Fuzzy Numbers

^{1}Department of Statistics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran

^{2}Department of Statistics, Arak Branch, Islamic Azad University, Arak, Iran

Abstract

The aim of this paper is investigate the notion of a generalized interval valued intuitionistic fuzzy number (GIVIFN), which extends the interval valuedintuitionistic fuzzy number. Firstly, the concept of GIVIFNBs is introduced. Arithmetic operations and cut sets over GIVIFNBBs are investigated. Then the values and ambiguities of the membership degree and the non-membership degree and the value index and ambiguity index for GIVIFNs are dened. Finally, we develop a value and ambiguity-based ranking method.

[1]L. Abdullah, L. Najib, A new preference scale MCDM method based on interval-valued intuitionistic fuzzy sets and the analytic hierarchy process, Soft Computing, 2016, 20(2), P.511-523.

[2]A. K. Adak, M. Bhowmik, Interval cut-set of interval-valued intuitionistic fuzzy sets, African Journal of Mathematics and Computer Science Research, 2011, 4(4), P.192-200.

[3]K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 1986, 20, P.87-96.

[4]K. T. Atanassov, G. Gargov, Interval valued intuitionistic fuzzy sets, Fuzzy Sets and Systems, 1989, 31(3), P.343-349.

[5]E. Baloui Jamkhaneh, S. Nadarajah, A New generalized intuitionistic fuzzy sets, Hacettepe Journal of Mathematics and Statistics, 2015, 44 (6), P.1537-1551.

[6]E. Baloui Jamkhaneh, New generalized interval value intuitionistic fuzzy sets, Research and Communications in Mathematics and Mathematical Sciences, 2015, 5(1), P.33-46.

[7]E. Baloui Jamkhaneh, A value and ambiguity-based ranking method of generalized intuitionistic fuzzy numbers, Research and Communications in Mathematics and Mathematical Sciences, 2016, 6(2), P.89-103.

[8]P. Burillo, H. Bustince, V. Mohedano, Some denition of intuitionistic fuzzy number, Fuzzy based expert systems, fuzzy Bulgarian enthusiasts, September 28-30, 199), Soa, Bulgaria.

[9]S. S. L. Chang, L.A. Zadeh, On fuzzy mapping and control, IEEE Transaction on Systems, Man and Cybernetics, 1972, 2(1), P.30-34.

[10]D. Dubois, H. Prade, Operations on fuzzy numbers, International Journal of Systems Science, 1978, 9, P.613-626.

[11]H. Garg, A new generalized improved score function of interval valued intuitionistic fuzzy sets and applications in expert systems, Applied Soft Computing, 2016, 38, P.988-999.

[12]G. Intepe, E. Bozdag, T. Koc, The selection of technology forecasting method using a multi-criteria interval-valued intuitionistic fuzzy group decision making approach, Computers and Industrial Engineering, 2013, 65, P.277-285.

[13]J. Li, M. J. Lin, H. Chen, ELECTRE method based on interval valued intuitionistic fuzzy number, Applied Mechanics and Materials, 2012, Vols. 220-223, P.2308-2312.

[14]G. S. Mahapatra, T. K. Roy, Reliability evaluation using triangular intuitionistic fuzzy numbers arithmetic operations, Proceedings of World Academy of Science, Engineering and Technology, Malaysia, 2009, 38, P.587-585.

[15]G. S. Mahapatra, B. S. Mahapatra, Intuitionistic fuzzy fault tree analysis using intuitionistic fuzzy numbers, International Mathematical Forum, 2010, 5(21), P.1015{1024.

[16]J. H. Park, I. Y. Park, Y. C. Kwun, X. Tan, Extension of the TOPSIS method for decision making problems under interval-valued intuitionistic fuzzy environment, Applied Mathematical Modeling, 2011, 35, P.2544- 2556.

[17]R. Parvathi, C. Malathi, Arithmetic operations on symmetric trapezoidal intuitionistic fuzzy numbers, International Journal of Soft Computing and Engineering, 2012, 02(2), P.268-273.

[18]A. Shabani, E. Baloui Jamkhaneh, A new generalized intuitionistic fuzzy number, Journal of Fuzzy Set Valued Analysis, 2014, 4, P.1-10.

[19]S. Sudha, J. Rachel, I. Jeba, Crop production using interval-valued intuitionistic fuzzy TOPSIS method, International Journal of Emerging Research in Management and Technology, 2015, 4(11), P.435-466.

[20]S. Veeramachaneni, H. Kandikonda, An ELECTRE approach for multicriteria interval-valued intuitionistic trapezoidal fuzzy group decision making problems, Advances in Fuzzy Systems, 2016, vol. 2016, Article ID 1956303, 17 pages, doi:10.1155/2016/1956303.

[21]J. Q. Wang, Z. Zhang, Aggregation operators on intuitionistic trapezoidal fuzzy number and its application to multi-criteria decision making problems, Journal of Systems Engineering and Electronics, 2009, 20, P.321-326.

[22]J. Q. Wang, Z. Zhang, Multi-criteria decision making method with incomplete certain information based on intuitionistic fuzzy number, Control and Decision, 2009, 24, P.226-230.

[23]Z. S. Xu, Intuitionist fuzzy aggregation operators, IEEE Transactions on Fuzzy Systems, 2007, 15(6), P.1179-1187.

[24]Z. S. Xu, Methods for aggregating interval valued intuitionistic fuzzy information and their application to decision making, Control and Decision, 2007, 22(2), P.215-219.

[25]J. Ye, Multicriteria fuzzy decision making method based on a novel accuracy function under interval valued intuitionistic fuzzy environment, Expert Systems with Applications, 2009, 36, P.6899-6902.

[26]X. H. Yuan, H. X. Li, Cut sets on interval valued intuitionistic fuzzy sets, Sixth International Conference on Fuzzy Systems and Knowledge Discovery, 2009, 6, P.167-171.

[27]L. A. Zadeh, Fuzzy sets, Information and Control, 1965, 8(3), P.338-356.