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Abstract

In this paper we obtain a necessary and a sufficient condition for the set of
ω0-nearest points ( ω0-farthest points) to be non-empty or a singleton set in
normed linear spaces. We shall find a necessary and a sufficient condition for
an uniquely remotal set to be a singleton set.
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1 Introduction

Franchetti and Singer [3] obtained some results on the characteri-
zation and existence of farthest points in normed linear spaces in
terms of bounded linear functionals.

Let W be a non-empty subset of a normed linear space X. For any
x ∈ X, the (possibly empty) set of best approximation x from W
is defined by

PW (x) = {y ∈ W : ‖x− y‖ = d(x,W )},

where d(x,W ) = inf{‖x− y‖ : y ∈ W}.

For ω0 ∈ W , we have

P−1W (ω0) = {x ∈ X : ω0 ∈ PW (x)} = {x ∈ X : ‖x−ω0‖ = d(x,W )},

which is called ω0-nearest points set. It is clear that, if 0, ω0 ∈ W ,

P−1W (ω0) = ω0 + P−1W (0).

Note that if z ∈ P−1W (0), then αz ∈ P−1αW (0) for every scalar α.

The subset W is said to be proximinal if the set PW (x) is non-empty
for every x ∈ X and the set W is Chebyshev if PW (x) is a singleton
set for every x ∈ X (see [2-3, 9-10]).

Let W be a non-empty bounded subset of a real normed linear
space X and x ∈ X. An element g0 ∈ W is called a farthest point
to x in W if

||g0 − x|| = ρ(x,W ) = sup
g∈W
||g − x||,

the (possibly empty) set of farthest points x from W is defined by

FW (x) = {y ∈ W : ||y − x|| = ρ(x,W )}.
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For ω0 ∈ W , we define

F−1W (ω0) = {x ∈ X : ω0 ∈ FW (x)} = {x ∈ X : ‖x−ω0‖ = ρ(x,W )},

which is called ω0-farthest points set. It is clear that if 0, ω0]inW ,

F−1W (ω0) = ω0 + F−1W (0).

Note that if z ∈ F−1W (0), then αz ∈ F−1αW (0) for every scalar α.

It is clear that for+ x ∈ X,

FW (x) = (x− F−1W (0))
⋂
W.

Let W be a bounded set in a normed linear space X. The set W is
said to be remotal if the set FW (x) is non-empty for each x ∈ X,
uniquely remotal if the set FW (x) consist of exactly one element for
each x ∈ X,. (see [4, 6-8])
We will use the well-known fact about proximity.

Lemma 1 [9] Let X be a normed linear space and W be a linear
subspace of X. If W is proximinal for r > 0, then there exists a
z ∈ P−1W (0).

Lemma 2 [7] Let W be a uniquely remotal subset of a normed
space (X, ‖ · ‖). Then a necessary and sufficient condition that W
be singleton is that

‖ x− qW (x) ‖=‖ y − qW (x) ‖=⇒ qW (x) = qW (y).

2 ω0-Nearest point sets and ω0-Farthest point sets

In this section, we will consider, ω0-nearest point sets and ω0-
farthest point sets and uniquely remotal sets in normed linear spaces.

Theorem 3 Let X be a normed linear space,
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(i) If W is a non-empty proximinal subset of X and P−1W (ω0) is
singleton, then W is Chebyshev.

(ii)If W is a non-empty remotal bounded subset of X, ω0 ∈ W and
F−1W (ω0) is singleton. Then W is uniquely remotal set.

Proof. (i) Suppose x ∈ X and g1, g2 ∈ PW (x). Then x− gi + ω0 ∈
P−1W (ω0), for every i = 1, 2. Therefore g1 = g2.
(ii) The proof is similar to proof of (i)

Theorem 4 Suppose X is a strictly convex Banach space. If W is
a non-empty bounded subset of X and ω0 ∈ W . If F−1W (ω0) 6= ∅ then
P−1W (ω0) 6= ∅.

Proof. Form [5], if z ∈ W is a farthest point from an x ∈ X, then
z is also a nearest point in W . Now suppose x ∈ F−1W (ω0), then
ω0 ∈ FW (x), it follows that for some a z ∈ X, we have ω0 ∈ PW (z),
therefore z ∈ P−1W (ω0).

Example 2.1 Let X be a normed space and W = {x ∈ X : ‖x‖ ≤
1}. For x ∈ X, it is trivial for every x ∈ X, d(x,W ) = |1 − |x||,
δ(x,W ) = |1 + |x|| and x ∈ PW ( x

‖x‖) and −x ∈ FW ( x
‖x‖).

Also it is clear that P−1W (0) = F−1W (0) = W

We know that in a normed linear space X, a vector x is said to be
Birkhoff orthogonal to a vector y if the inequality ‖x‖ ≤ ‖x+ αy‖
holds for any real number α.

Theorem 5 Let (H, ,< ., . >) be an inner product space, W is
a subspace of H. Then P−1W (0) = W⊥ and for ω0 ∈ W we have
P−1W (ω0) = ω0 +W⊥.

Proof. It is clear that if X is normed linear space, W is a subspace
of X and w ∈ W . Then for any x ∈ P−1W (0) and x⊥w. Therefore
x ∈ W⊥. If x ∈ W⊥, then x⊥w for every w ∈ W . Therefore ‖x‖ ≤
‖x+αw‖ for w ∈ W . Since W is a subspace, we have ‖x‖ = d(x,W )
and x ∈ P−1(0). Therefore P−1W (0) = W⊥.
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Example 2.2 (i) Let X = R2 with Euclidean norm, and W =
{(x, x) : x ∈ R} be a subspace. From Theorem 2.2, P−1W (0) =
W⊥ =< (−1, 1) >.

(ii) Let X = R2 with Euclidean norm, and W = {(x, x) : 0 ≤ x ≤
1}. Then F−1W (0) = {(x, y) : x ≥ 1}.

Theorem 6 Suppose X is a normed linear space. (i) If W is a non-
empty subset of X and ω0 ∈ W . Then W is proximinal if and only
if X = W +P−1W (ω0). (ii) If W is a non-empty bounded subset of X
and ω0 ∈ W . Then W is remotal if and only if X = W + F−1W (ω0).

Proof. It is clear.

Theorem 7 Let X be a normed linear space.

(i) W a subspace of X with codimension one, and there exists a
z ∈ P−1W (0) and X = W

⊕
< z >, (where

⊕
means that the sum

decomposition of each element x ∈ E is unique), then W is prox-
iminal.

(ii) W a proximinal subspace of X and P−1W (0) =< z >. Then W
is Chebyshev.

(iii) W a non-empty bounded subset of X, 0 ∈ W and W is remotal,
then there exists a z ∈ F−1W (0).

(iv) W a non-empty bounded subset of X, 0 ∈ W . If there exists a
z ∈ F−1W (0) and X = W

⊕
< z >, (where

⊕
means that the sum

decomposition of each element x ∈ X is unique.) and W = βW for
every scalar β, then W is remotal.

(v) W a non-empty bounded subset of X, 0 ∈ W and there exists an
unique z ∈ X such that F−1W (0) = {z}. Then W is uniquely remotal

(vi) X a reflexive space and has the Kadec-Klee property. For every
non-empty bounded subset of W of X and 0 ∈ W , the set F−1W (0)
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is compact.

Proof. (i) For arbitrary x ∈ X\W , there exists an unique element
h ∈ W and the scaler α such that x = h + αz. In this case h ∈
PW (x), and therefore W is proximinal.
(ii) In this case, we show that X = W

⊕
P−1W (0). Since if x ∈

X, there exits a g0 ∈ PW (x). Then x = g0 + (x − g0) and X =
W + P−1W (0), also W

⋂
P−1W (0) = {0}. Now for x ∈ X, suppose

g1, g2 ∈ PW (x). We have x = g1 + (x − g1) = g2 + (x − g2) and
the sum decomposition of each element x ∈ X is unique. Therefore
g1 = g2.
(iii) Suppose x ∈ X\W , there exists a g0 ∈ FW (X), then z =
x− g0 ∈ F−1W (0).
(iv) For arbitrary x ∈ X\W , there exists an unique element h ∈ W
and the scaler α such that x = h + αz. In this case h ∈ FW (x),
since W = αW , therefore W is remotal.
(v) For x ∈ X, suppose g1, g2 ∈ FW (x), consider zi = x − gi .
Therefore zi ∈ F−1W (0), for i = 1, 2, therefore z1 = z2 = z, and it
follows that g1 = g2 .
(vi) Since X is reflexive, the closed unit ball BX is weakly compact.
Consider the sequence {xn} ⊆ F−1W (0). We define yn = xn

ρ(xn,W )

Therefore yn ∈ BX Therefore there exists a subsequence {ynk
} and

y0 ∈ BX such that ynk
⇀ y0 . Since X has Kadec-Klee property,

ynk
−→ y0. Also the sequence {ρ(xn,W )} is a bounded sequence

and has a convergence subsequence {ρ(xnl
,W )} to k. Thus xnp −→

y0k. Then the set F−1W (0) is compact.

Theorem 8 Suppose X is a normed linear space.

(i) If W is a non-empty subspace of X and ω0 ∈ W . We have
P−1W (ω0) = X if and only if W is singleton and W = {ω0}.

(ii) If W is a non-empty bounded subset of X and ω0 ∈ W . We
have F−1W (ω0) = X if and only if W is singleton and W = {ω0}.

Proof. (i) If P−1W (ω0) = X, then for every w ∈ W , we have w ∈
P−1W (ω0). Therefore w = ω0 and W = {ω0}. If W = {ω0} and
x ∈ X, then d(x,W ) = ‖x− ω0‖. Therefore x ∈ P−1W (ω0).
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(ii) Suppose W = {ω0}, if x ∈ X, then qx = ω0. That is ‖x−ω0‖ =
ρ(x,W ), therefore x ∈ F−1W (ω0). It follows that X = F−1W (ω0). If
X = F−1W (ω0), it is clear that W is remotal. Also, if for x ∈ X,
there exist w1, w2 ∈ FW (x), then w1 = w2 = ω0. Therefore W
is uniquely remotal. From Lemma 1.2, W is singleton. Therefore
W = {ω0}.

Theorem 9 Suppose X is a normed linear space. If W is a non-
empty proximinal subspace of X and ω0 ∈ W . If P−1W (ω0) is convex.
Then W is Chebyshev.

Proof. Since P−1W (ω0) is convex. The set P−1W (0) = P−1W (ω0)−ω0 is
convex. From [5], W is Chebyshev.

Theorem 10 Let W ⊆ X be a proximinal hyperplane and ω0 ∈
W . If PW (x) is compact for each x ∈ X. Then every sequence
{xn}n≥1 ⊆ SX with xn ∈ P−1W (ω0) for each n has a convergent
subsequence.

Proof. Suppose PW (x) is compact for each x ∈ X. If the sequence
{xn}n≥1 ⊆ SX with xn ∈ P−1W (ω0) for each n. Put yn = xn − ω0 ∈
P−1W (0) and ‖yn‖ = d(xn,W ) = ‖xn‖ = 1. From [Theorem 2.1 ,6,
8], the sequences {yn} and {xn} has a convergent subsequence.

Theorem 11 Let W ⊆ X be a proximinal hyperplane. If every se-
quence {xn}n≥1 ⊆ SX with xn ∈ P−1W (0) for each n has a convergent
subsequence. Then PW (x) is compact for each x ∈ X.

Proof. If every sequence {xn}n≥1 ⊆ SX with xn ∈ P−1W (0) for each
n has a convergent subsequence. From [Theorem 2.1, 6, 8], W is
quasi-Chebyshev subspace. It follows that PW (x) is compact for
each x ∈ X.

Let W be a subspace of a normed space X. We define the quotient
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space X/W to be the set of all sets x+W of W together with the
following operations:

(x+W ) + (y +W ) = (x+ y) +W,

and
λ(x+W ) = λx+W,

for all x, y ∈ X and arbitrary scalar λ. Then, the quotient space
X/W is a normed space with the norm ‖x+W‖ = infw∈W‖x−w‖.

Theorem 12 Let M be a proximinal subspace of a normed space
X, W a proximinal subspace of X containing M . If P−1W (0) =< z >
for z ∈M , then W/M is Chebyshev .

Proof. From Lemma [2], W/M is proximinal. Suppose there exist
z1 + M, z2 + M ∈ PW/M(x + M). Since M is proximinal there ex-
ist m1,m2 ∈ M such that d(z1,M) = ‖z1 − m1‖ and d(z2,M) =
‖z2 − m2‖. Therefore z1 − m1, z2 − m2 ∈ P−1W (0) =< z >, then
z1 −m1 = α1z and z2 −m2 = α2z. Therefore z1 +M = z2 +M .

For a Banach space X and closed subspace W of X, we denote its
unit sphere by SX . For x ∈ X with d(x,W ) = 1, let QW (x) =
x − PW (x). It is easy to see that QW (x) = {z ∈ SX : f(z) =
f(x) ∀f ∈ W⊥}.
For f ∈ X∗. we define the pre-duality map of X by

JX(f) = {z ∈ SX : f(z) = ‖f‖}

.

Definition 2.1 [10] Let X be a normed space, W be a subspace
of X. Then W is a ω-Chebyshev subspace, if for every x ∈ X,
x+ (P−1W (0)

⋂
SX) is a nonempty and weakly compact set in X.

Definition 2.2 [10] A subspace W of a normed space X is called
ω-boundedly compact if for every bounded sequence {yn} in W ,
there exists x0 ∈ W and a subsequence {ynk

} such that ynk
⇀ x0.
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In normed space X, suppose the unite sphere with center ω0 ∈ X
denoted by

S(ω0, 1) = {x ∈ X : ‖x− ω0‖ = 1}.

Theorem 13 Let X be a normed space, W be a subspace of X and
ω0 ∈ X. If x ∈ X and the set x+ (P−1W (ω0)

⋂
S(ω0, 1)) is nonempty

and weakly compact, then W is ω-Chebyshev.

Proof. It is clear, because

x+ (P−1W (ω0)
⋂
S(ω0, 1)) = x+ ω0 + (P−1W (0)

⋂
SX)).

Theorem 14 Let X be a normed space, W be a subspace of X,
ω0 ∈ W and codimW = 1. Then the following statement are equiv-
alent:

(i) x+ (P−1W (ω0)
⋂
S(ω0, 1)) is nonempty and weakly compact.

(ii) for every f ∈ W⊥, JX(f) is weakly compact.

(iii) for every x ∈ X, PW (x) is weakly compact.

Proof. (i)⇒ (ii). Since W is ω-Chebyshev, from [Theorem 2.1, 10]
for every f ∈ W⊥, JX(f) is weakly compact.

(ii)⇒ (iii). Theorem 2.1 of [10].

(iii) ⇒ (i). Suppose x ∈ X, and {zn} ⊆ x + (P−1W (ω0)
⋂
S(ω0, 1)),

then {zn−ω0 ∈ x+(P−1W (0)
⋂
SX)). Therefore the sequence {zn−ω0}

has a weakly convergent subsequence, it follows that {zn} has a
weakly convergent subsequence. Also x + ω0 ∈ X and W is ω-
Chebyshev, therefore x+ (P−1W (ω0)

⋂
S(ω0, 1)) 6= ∅.

Theorem 15 Let X be a normed space, W be a subspace of X,
ω0 ∈ W . If P−1W (ω0) is ω-boundedly compact. Then PW (x) is weakly
compact for every x ∈ X.

Proof. Because P−1W (0) = P−1W (ω0)−ω0 is ω-boundedly compact, it
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follows that from [Theorem 2.3, 10] the set PW (x) is weakly compact
for every x ∈ X.

Corollary 16 Let X be a normed space, W be a subspace of X,
ω0 ∈ W . Then P−1W (ω0) is ω-boundedly compact if and only if W is
ω-Chebyshev.
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