On co-Farthest Points in Normed Linear Spaces

H. Mazaheria,*, S. M. Moosavib, Z. Bizhazadeha, M. A. Dehghanb

aFaculty of Mathematics, Yazd University, Yazd, Iran
bFaculty of Mathematics, Vali-e-asr University of Rafsanjan, Rafsanjan, Iran

Received 17 March 2018; accepted 24 August 2018

Abstract

In this paper, we consider the concepts co-farthest points in normed linear spaces. At first, we define farthest points, farthest orthogonality in normed linear spaces. Then we define co-farthest points, co-remotal sets, co-uniquely sets and co-farthest maps. We shall prove some theorems about co-farthest points, co-remotal sets. We obtain a necessary and coefficient conditions about co-farthest points and dual spaces.

Key words: Farthest points, Co-farthest points, Co-farthest map.

2010 AMS Mathematics Subject Classification: 46A32, 46M05, 41A17.

* Corresponding author’s E-mail: hmazaheri@yazd.ac.ir
1 Introduction

A kind of approximation, called best co-approximation was introduced by Franchettei and Furi in 1972 [12]. Some results on best co-approximation theory in linear normed spaces have been obtained by P. L. Papini and I. Singer [35]. In this section we consider co-proximinality and co-remotality in normed linear spaces.

Definition 1.1 Let \((X, \|\cdot\|)\) be a normed linear space, \(G\) a non-empty subset of \(X\) and \(x \in X\). We say that \(g_0 \in G\) is a best co-approximation of \(x\) whenever \(\|g - g_0\| \leq \|x - g\|\) for all \(g \in G\). We denote the set of all best co-approximations of \(x\) in \(G\) by \(R_G(x)\).

We say that \(G\) is a co-proximinal subset of \(X\) if \(R_G(x)\) is a non-empty subset of \(G\) for all \(x \in X\). Also, we say that \(G\) is a co-Chebyshev subset of \(X\) if \(R_G(x)\) is a singleton subset of \(G\) for all \(x \in X\).

Definition 1.2 Let \((X, \|\cdot\|)\) be a normed linear space, \(A\) a subset of \(X\), \(x \in X\) and \(m_0 \in A\). We say that \(m_0\) is co-farthest to \(x\) if \(\|m_0 - a\| \geq \|x - a\|\) for every \(a \in A\). The set of co-farthest points to \(x\) in \(A\) is denoted by

\[C_A(x) = \{a_0 \in A : \|a_0 - a\| \geq \|x - a\| \text{ for every } a \in A \backslash \{a_0\}\}. \]

The set \(A\) is said to be co-remotal if \(C_A(x)\) has at least one element for every \(x \in X\). If for each \(x \in X\), \(C_A(x)\) has exactly one element in \(A\), then the set \(A\) is called co-uniquly remotal. We define for \(a_0 \in A\),

\[C_A^{-1}(a_0) = \{x \in X : \|a_0 - a\| \geq \|x - a\| \text{ for every } a \in A\}. \]

\(C_A^{-1}(a_0)\) is a closed set and \(a_0 \in C_A^{-1}(a_0)\). Note that if \(x \in A\), then \(x \in C_A(x)\).

Example 1.1 Suppose \(X = \mathbb{R}\) and \(A = [1, 2] \cup \{3\} \backslash \{1\}\). We set \(x = 1\) and \(a_0 = 3\). Then \(a_0 \in C_A(x)\).
2 Co-Probiminality, co-Chebyshevity and co-Remotality

In this section we consider co-proximinality and co-Chebyshevity and co-remotality in normed linear spaces.

Theorem 2.1 Let \((X, \| \cdot \|)\) be a normed linear space and \(A\) a subset of \(X\).

a) If for every \(x \in X\) and for every \(a \in A\), \(a \in H_{d_x}\), then \(A\) is co-proximinal.

b) If for every \(x \in X\) and for every \(a \in A\), there exists a unique \(b \in H_{\|x-a\|}\), then \(A\) is co-Chebyshev.

Proof. a) Suppose \(x \in X\), for every \(a \in A\) there exists \(a_0 \in A\) such that \(a - a_0 \in B[0, d_x]\). Therefore for every \(a \in A\)

\[
\|a - a_0\| \leq d_x
\]

\[
\leq \|x - a\|
\]

That is \(a_0 \in R_A(x)\) so \(A\) is co-proximinal.

b) Suppose \(x \in X\), \(a \in A\) and there exists an unique \(b \in H_{\|x-a\|}\), by part (a), \(R_A(x)\) is non-empty. The set \(A\) is co-proximinal.

For each \(x \in X\) if there exist \(a_1, a_2 \in R_A(x)\), then for \(a \in A\) we have \(\|a_i - a\| \leq \|x - a\|\) for \(i = 1, 2\). Therefore for \(a \in A, a_i - a \in B[0, \|x - a\|]\), and for \(a \in A\), we have \(a_i \in H_{\|x-a\|}\). This is a contraction. It follows that \(A\) is co-Chebyshev.

Theorem 2.2 Let \((X, \| \cdot \|)\) be a normed linear space and \(A\) a subset of \(X\).

a) If for every \(x \in X\) and for every \(a \in A\), \(a \in K_{\delta_x}\), then \(A\) is co-remotal.
b) If for every \(x \in X \) and for every \(a \in A \), there exists a unique \(b \in K_{\|x-a\|} \), then \(A \) is co-uniquely remotal.

Proof. a) Suppose \(x \in X \) and \(a \in A \). Suppose there exists an \(a_0 \in A \) such that \(a - a_0 \in B^c[0, \delta_x] \). Therefore for every \(a \in A \)

\[
\|a - a_0\| \geq \delta_x \\
\geq \|x - a\|.
\]

That is \(a_0 \in C_A(x) \) so \(A \) is co-remotal.

b) If \(x \in X \) and \(a \in A \) if there exists an unique \(b \in K_{\|x-a\|} \), then \(C_A(x) \) is non-empty. The set \(A \) is co-remotal.

For \(x \in X \) if there exist \(a_1, a_2 \in C_A(x) \), then for \(a \in A \) we have \(\|a_i - a\| \leq \|x - a\| \) for \(i = 1, 2 \). Therefore for \(a \in A \), \(a_i - a \in B^c[0, \|x - a\|] \), and for \(a \in A \), we have \(a_i \in K_{\|x-a\|} \). This is a contraction. It follows that \(A \) is co-uniquely remotal. Let \(W \) be a non-empty bounded subset of a normed linear space \((X, \|\|)\). If there exists a point \(\omega_0 \in W \) such that \(\delta(x,W) = \sup\{\|x - \omega\| : \omega \in W\} = \|x - \omega_0\| \) for \(x \in X \). Then \(\omega_0 \) is called farthest point in \(W \) from \(x \). The set of all such \(\omega_0 \in W \) is denoted by \(F_W(x) \).

Theorem 2.3 Let \(A \) be a bounded subset of a normed linear space, \(A + A = A \), \(-A = A \) and \(0 \in A \),

(i) If \(a_0 \in A \), then \(C_A^{-1}(a_0) = -a_0 + C_A^{-1}(0) \),

(ii) \(C_A(x) = (-x + C_A^{-1}(0)) \cap A \).

(iii) If \(a_0 \in A \), then \(x \in C_A(a_0) \) if and only if \(x - a_0 \in C_A^{-1}(a_0) \)

Proof. (i)
\[x \in C_A^{-1}(a_0) \iff a_0 \in C_A(x) \]
\[\iff \|a_0 - a\| \geq \|x - a\| \text{ for every } a \in A \setminus \{a_0\} \]
\[\iff \|u\| \geq \|x - a_0 - u\| \text{ for every } u \in A \text{ since } A + A = A \]
\[\iff x + a_0 \in C_A^{-1}(0) \]
\[\iff x \in -a_0 + C_A^{-1}(0). \]

(ii)

\[a_0 \in C_A(x) \iff x \in C_A^{-1}(a_0) \]
\[\iff x + a_0 \in C_A^{-1}(0) \]
\[\iff a_0 \in -x - C_A^{-1}(0) \text{ and } a_0 \in A. \]

(iii) Suppose \(x - a_0 \in C_A^{-1}(a_0) \), then
\[\|a\| \geq \|x - a_0 - a\|. \]
Since \(A + A = A \) and \(-A = A \), then \(a - a_0 \in A + A \). Then
\[\|b\| \geq \|x - a_0 - b\| \text{ for every } b \in A, \]

Therefore \(x - a_0 \in C_A^{-1}(a_0) \).

Theorem 2.4 Let \(A \) be a bounded subset of a normed linear space, then the following statements are equivalent:

(i) \(A \) is co-remotal,

(ii) \(X = -A + C_A^{-1}(0) \).

Proof. (i) \(\rightarrow \) (ii). Suppose \(A \) is co-remotal and \(x \in X \), there exists a \(a_0 \in A \) such that \(a_0 \in C_A(x) \). Then \(u_0 = x + a_0 \in C_A^{-1}(0) \), and \(x = -a_0 + u_0 \in -A + C_A^{-1}(0) \).

(ii) \(\rightarrow \) (i). If \(X = -A + C_A^{-1}(0) \) and \(x \in X \). Then there exist a \(a_0 \in A \) such that \(x + a_0 \in C_A^{-1}(0) \). Thus \(a_0 \in C_A(x) \) and \(A \) is co-remotal.

Theorem 2.5 Let \(A \) be a co-remotal subset of a normed linear space,
\(A = A + A \) and \(0 \in A \), then there exists an element \(z \in X \setminus \{0\} \) such that \(0 \in C_A(z) \).

Proof. Suppose \(x \in X \setminus A \), since \(A \) is co-remotal, there exists \(a_0 \in C_A(x) \) and so \(z = x + a_0 \in C_A^{-1}(0) \). Hence \(0 \in C_A(z) \), \(z \neq 0 \).

Theorem 2.6 Let \((X, \|\|)\) be a normed linear space, \(A \) a bounded subset of \(X \), \(x \in X \), \(A = A + A \) and \(0 \in A \). If \(0 \in C_A(x) \), then \(A \perp_F x \).

Proof. If \(0 \in C_A(x) \) and \(a \in A \). Then \(\|a\| \geq \|x - a\| \), therefore \(A \perp_F x \).

Theorem 2.7 Let \((X, \|\|)\) be a normed linear space and \(x, y \in X \). Then the following statements are equivalent:

(i) \(A \perp_F x \) or \(0 \in C_A(x) \),

(ii) For every \(m \in A \), there exists an \(f \in X^* \) such that \(f \) satisfies \(\|f\| = 1 \) and \(|f(m)| \geq \delta(x, A) \).

Proof. (i) → (ii). Suppose \(A \perp_F x \) then for \(m \in A \), \(m \perp_F x \). That is \(\|m\| \geq \delta(x, A) \). By Hahn-Banach Theorem, there exists an \(f \in X^* \) such that \(\|f\| = 1 \) and \(|f(m)| = \|m\| \geq \delta(x, A) \).

(ii) → (i). Suppose there exists an \(f \in X^* \) such that \(f \) satisfies \(\|f\| = 1 \) and \(|f(m)| \geq \delta(x, A) \). For \(m \in A \), we have

\[
\|m\| = \|f\||m|| \\
\geq |f(m)| \\
\leq \|x - m\|.
\]

Therefore \(m \perp_F x \) and \(A \perp_F x \).

Theorem 2.8 Let \((X, \|\|)\) be a normed linear space and \(x \in X \).

(i) If a nonempty bounded set \(A \) in \(X \) is co-remotal then

\[A \cap \bigcap_{g \in X} C_{\|x - a\|} \neq \emptyset, \]
where $C_{\|x-a\|} = A \cap B^c[g, \delta_2]$.

(ii) For every $x \in X$, if $A \cap (\bigcap_{g \in X} C_{\|x-g\|}) \neq \emptyset$. Then A is co-remotal.

Proof. (i) Suppose A is co-remotal and $x \in X$. Then there exists a $a_0 \in A$ such that $\|g - a_0\| \geq \|g - x\|$ for every $g \in A$. Therefore $a_0 \in C_{\|x-a\|}$ for every $g \in A$, it follows that $a_0 \in \bigcap_{g \in X} C_{\|x-g\|}$, and $A \cap (\bigcap_{g \in X} C_{\|x-g\|}) \neq \emptyset$.

(ii) Suppose $x \in X$, since $A \cap (\bigcap_{g \in X} C_{\|x-g\|}) \neq \emptyset$. There exists a $a_0 \in A$ such that $a_0 \in (\bigcap_{g \in X} C_{\|x-g\|})$. Therefore $\|a_0 - g\| \geq \|x - g\|$ for every $g \in A \backslash \{a_0\}$. Therefore A is co-remotal.

Theorem 2.9 Let $(X, \|\cdot\|)$ be a normed linear space and A a co-remotal subset of X, $A = A + A$ and $0 \in A$. If $C_A^{-1}(0)$ is singleton, then A is co-uniquely remotal.

Proof. Suppose $x \in X$ and $a_1, a_2 \in C_A(x)$. Then $x \in C_{A^{-1}}(a_i)$ for $i = 1, 2$. Therefore $x - a_i \in C_{A^{-1}}(0)$ for $i = 1, 2$. It follow that $x - a_1 = x - a_2$ and $a_1 = a_2$. Thus A is co-uniquely remotal.

Theorem 2.10 Let $(X, \|\cdot\|)$ be a normed linear space, and A be a bounded subset. Then $C_A^{-1}(a_0)$ is convex.

Proof. If $x_1, x_2 \in C_A^{-1}(a_0)$ and $0 < \lambda < 1$. Since $\|a_0 - a\| \geq \|x_1 - a_0\|$ and $\|a_0 - a\| \geq \|x_2 - a_0\|$, for every $a \in A \backslash \{a_0\}$. Then

$$\|\lambda x_1 + (1 - \lambda)x_2 - a\| = \|\lambda(x_1 - a) + (1 - \lambda)(x_2 - a)\|$$

$$\leq \lambda \|x_1 - a\| + (1 - \lambda)\|x_2 - a\|$$

$$\leq \lambda \|a_0 - a\| + (1 - \lambda)\|a_0 - a\|,$$

for every $a \in A \backslash \{a_0\}$. Therefore $\lambda x_1 + (1 - \lambda)x_2 \in C_A^{-1}(a_0)$. It follows that $C_A^{-1}(a_0)$ is convex.

Theorem 2.11 Let $(X, \|\cdot\|)$ be a normed linear space, A a subset of X, $-A = A$, $A = A + A$ and $0 \in A$. If A is co-remotal, then A is co-uniquely remotal.
Proof. Suppose \(x \in X \) and \(g_1, g_2 \in C_A(x) \) by \(g_1 \neq g_2 \). Since \(g_1, g_2 \in C_A(x) \), We have \(x + g_1, x + g_2 \in C_A^{-1}(0) \). Also \(-g_2 - x \in C_A^{-1}(0) \), therefore \(\frac{1}{2}[g_1 - g_2] = \frac{1}{2}[g_1 + x - x - g_2] \in C_A^{-1}(0) \). That is, for every \(a \in A \{0\} \),

\[
\| \frac{1}{2}[g_1 - g_2] - a \| \leq \|a\|.
\]

Since \(g_1 - g_2 \in A \) and \(a = (g_1 - g_2) \in A \). Then

\[
\| \frac{1}{2}[g_1 - g_2] + [g_1 - g_2] \| \leq \|g_1 - g_2\|
\]

and

\[
\frac{3}{2} \|g_1 - g_2\| \leq \|g_1 - g_2\|
\]

and

\[
\frac{3}{2} \leq 1
\]

is contraction. That is, \(A \) is co-uniquely remotal.

Theorem 2.12 Let \((X, \|\cdot\|)\) be a normed linear space, \(A \) a subset of \(X \) and \(x \in X \). If \(A \) compact(weakly compact) then \(C_A(x) \) is compact(weakly compact).

Proof. Suppose \(\{x_n\}_{n \geq 1} \) is a sequence in \(C_A(x) \). Then for every sequence \(\{a_n\}_{n \geq 1} \) in \(A \{x\} \)

\[
\|x_n - a_n\| \geq \|x - a_n\|.
\]

Since \(A \) is compact, there exists a convergent subsequence \(\{a_{n_k}\} \) and \(\{x_{n_l}\} \) in \(A \), \(x_0 \) and \(a_0 \) \(\in A \) such that \(x_{n_l} \rightarrow x_0 \) and \(a_{n_k} \rightarrow a_0 \). Then \(\|x_{n_l} - a_{n_k}\| \geq \|x - a_{n_k}\| \). Then \(\|x_0 - a_0\| \geq \|x - a_0\| \). Therefore \(x_0 \in C_A(x) \) and \(x_{n_l} \rightarrow x_0 \). Therefore \(\{x_n\}_{n \geq 1} \) has a subsequence in \(C_A(x) \) and \(C_A(x) \) is compact (weakly compact).

Theorem 2.13 Let \(A \) be a compact subset of a normed linear space \((X, \|\cdot\|)\). Then

(i) for every \(x \in X \), \(C_A(x) \),

(ii) \(C_A \) is upper semi-continues on \(D(C_A) \).

124
Proof. (i) Suppose \(\{a_n\}_{n \geq 1} \) is any sequence in \(C_A(x) \). Therefore for every \(n \geq 1 \), \(\|a_n - a\| \geq \|x - a\| \) for every \(a \in A \setminus \{a_n\} \). Since \(A \) is compact, the sequence \(\|a_n\|_{n \geq 1} \) has a subsequence \(\{a_{n_i}\} \) such that \(a_{n_i} \to a_0 \in A \). Therefore

\[
\|a_0 - a\| = \lim_{i \to \infty} \|a_{n_i} - a\| \geq \|x - a\|,
\]

for every \(a \in A \setminus \{a_n\} \), it follows that \(a_0 \in C_A(x) \). Thus \(C_A(x) \) is compact.

(ii) Suppose \(N \) is a closed subset of \(A \) and \(B = \{x \in D(C_A) : C_A(x) \cap N \neq \emptyset\} \). To show that \(B \) is closed, if \(x \) is a limit point of \(B \). Then there exists a sequence \(\{x_n\}_{n \geq 1} \) in \(B \) such that \(x_n \to x \). Now, \(x_n \in B \), implies that there exists \(a_n \in C_A(x_n) \cap N \), and so \(\|a_n - a\| \geq \|x_n - a\| \) for every \(a \in A \setminus \{a_n\} \). Since \(A \) is compact, there exists a subsequence \(\{a_{n_i}\}_{i \geq 1} \) of \(\{a_n\}_{n \geq 1} \) such that \(a_{n_i} \to a_0 \), and so \(\|a_{n_i} - a\| \geq \|x_{n_i} - a\| \) for every \(a \in A \setminus \{a_{n_i}\} \). Implies that \(\|a_0 - a\| \geq \|x - a\| \) for every \(a \in A \setminus \{a_0\} \). Therefore \(a_0 \in C_A(x) \cap N \), i.e., \(x \in B \), so that \(B \) is closed. Therefore \(C_A \) is upper semi-continuous.

Theorem 2.14 Let \(A \) be a compact subset of a normed linear space \((X, \|\cdot\|)\). Then for every subset \(B \) of \(D(C_A) \), the subset \(C_A(B) \) is compact in \(A \).

Proof. Suppose \(\{a_n\}_{n \geq 1} \) is a sequence in \(C_A(B) \). Then there exists a \(x_n \in B \), such that \(a_n \in C_A(x_n) \), so that \(\|a_n - a\| \geq \|x_n - a\| \) for every \(a \in A \setminus \{a_n\} \). Since \(A \) is compact, there exists a subsequence \(\{a_{n_i}\}_{i \geq 1} \) of \(\{a_n\}_{n \geq 1} \) such that \(a_{n_i} \to a_0 \in A \). Since \(x_{n_i} \in A \), the compactness of \(B \) implies that the existence of a subsequence \(\{x_{n_{i_m}}\}_{m \geq 1} \) such that \(x_{n_{i_m}} \to x \in B \). Now, \(a_{n_{i_m}} \in C_A(x_{n_{i_m}}) \), implies \(\|a_{n_{i_m}} - a\| \geq \|x_{n_{i_m}} - a\| \) for every \(a \in A \setminus \{a_{n_{i_m}}\} \), in limiting case implies \(\|a_0 - a\| \geq \|x - a\| \) for every \(a \in A \setminus \{a_0\} \). Therefore \(a_0 \in C_A(x) \subseteq C_A(B) \). Hence \(C_A(B) \) is compact.

References

