On the strong convergence theorems by the hybrid method for a family of mappings in uniformly convex Banach spaces

M. Salehia,1, V. Dadashi b,2, M. Roohic,3,

aDepartment of Mathematics, Islamic Azad University, Savadkooh Branch, Savadkooh, Iran.
bDepartment of Mathematics, Islamic Azad University, Sari Branch, Sari, Iran.
cDepartment of Mathematics, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran.

Received 22 November 2010; Accepted 4 April 2011

Abstract

Some algorithms for finding common fixed point of a family of mappings is constructed. Indeed, let C be a nonempty closed convex subset of a uniformly convex Banach space X whose norm is Gateaux differentiable and let \(\{T_n\} \) be a family of self-mappings on C such that the set of all common fixed points of \(\{T_n\} \) is nonempty. We construct a sequence \(\{x_n\} \) generated by the hybrid method and also we give the conditions of \(\{T_n\} \) under which \(\{x_n\} \) converges strongly to a common fixed point of \(\{T_n\} \).

Keywords: Hybrid method, Common fixed point, Iterative algorithm, Uniformly convex Banach space.

1 Introduction

Let \(\{T_n\}_{n=0}^{+\infty} \) be a family of mappings of a real Hilbert space \(\mathcal{H} \) into itself and let \(F(T_n) \) be the set of all fixed points of \(T_n \). By the assumption that \(\bigcap_{n=0}^{+\infty} F(T_n) \neq \emptyset \), Haugazeau

1msalehi76@yahoo.com
2vahid.dadashi@iausari.ac.ir
3mehdi.roohi@gmail.com
M. Salehi, V. Dadashi, M. Roshi

[4] introduced a sequence \(\{x_n\} \) generated by the hybrid method, as following

\[
\begin{aligned}
x_0 &\in \mathcal{H} \\
y_n &= T_n(x_n) \\
C_n &= \{ z \in \mathcal{H} : \langle x_n - y_n, y_n - z \rangle \geq 0 \} \\
Q_n &= \{ z \in \mathcal{H} : \langle x_n - z, x_0 - x_n \rangle \geq 0 \} \\
x_{n+1} &= P_{C_n \cap Q_n}(x_0).
\end{aligned}
\]

In case that \(C_i \) is a closed convex subset of \(\mathcal{H} \) for \(i = 1, \ldots, m \), \(\bigcap_{i=1}^{m} C_i \neq \emptyset \) and \(T_n = P_{C_n(m \mod m + 1)} \), he proved a strong convergence theorem. Recently, Solodov and Svaiter [9], Bauschke and Combettes [2], Atsushiba and Takahashi [1], Nakajo and Takahashi [8], Iiduka, Takahashi and Toyoda [5], Nakajo, Shimoji and Takahashi [7], Svaiter [9], Bauschke and Combettes [2], Atsushiba and Takahashi [1], Nakajo and

Throughout this paper, let \(\mathbb{N}_0 = \mathbb{N} \cup \{0\} \) and let \(X \) be a real Banach space with dual space \(X^* \). The line segment between \(x \) and \(y \) is denoted and defined by \([x,y] := \{tx + (1-t)y : t \in [0,1]\} \). For a set-valued mapping \(T : X \rightrightarrows Y \), the domain of \(T \) is \(\text{Dom}(T) = \{ x \in X : T(x) \neq \emptyset \} \), range of \(T \) is \(\text{R}(T) = \{ y \in Y : \exists x \in X, (x,y) \in T \} \) and the inverse \(T^{-1} \) of \(T \) is \(\{ (y,x) : (x,y) \in T \} \). For a real number \(c \), let \(cT = \{ (xy) : (x,y) \in T \} \). If \(S \) and \(T \) are any set-valued mappings, we define \(S + T = \{ (xy + z) : (x,y) \in S, (x,z) \in T \} \). Set \(R_0^+ = [0, +\infty) \) and

\[
\mathcal{G} = \{ g : R_0^+ \rightarrow R_0^+ : g(0) = 0, \text{ g is continuous, strictly increasing and convex}\}.
\]

Lemma 1.1. [3] Let \(C \) be a nonempty closed convex subset of a uniformly convex Banach space \(X \) and let \(x \in X \). Then, there exists a unique element \(x_0 \in C \) such that \(\|x_0 - x\| = \inf_{y \in C} \|y - x\| \). Putting \(x_0 = P_C(x) \), we call \(P_C \) the metric projection onto \(C \).

Lemma 1.2. [10] Let \(C \) be a nonempty closed convex subset of a uniformly convex Banach space \(X \) whose norm is Gateaux differentiable and let \(x \in X \). Then \(y = P_C(x) \) if and only if \(\langle y - z, J(x - y) \rangle \geq 0 \) for all \(z \in C \).

Lemma 1.3. [10] Suppose \(X \) has a Gateaux differentiable norm. Then the duality mapping \(J \) is single-valued and \(\|x\|^2 - \|y\|^2 \geq 2\langle x - y, Jx \rangle \) for all \(x, y \in X \).

Lemma 1.4. [11] The Banach space \(X \) is uniformly convex if and only if for every bounded subset \(B \) of \(X \), there exists \(g_B \in \mathcal{G} \) such that

\[
\|\lambda x + (1-\lambda)y\|^2 \leq \lambda\|x\|^2 + (1-\lambda)\|y\|^2 - \lambda(1-\lambda)g_B(\|x - y\|) \tag{1.2}
\]

for all \(x, y \in B \) and all \(\lambda \in [0,1] \).
2 Main results

Let \(\{T_n\}_{n=0}^{+\infty} \) be a family of self-mappings of \(C \) and \(F(T_n) \) be the set of all fixed points of \(T_n \). Assume that \(F := \bigcap_{n=0}^{+\infty} F(T_n) \) is a nonempty closed convex subset of \(C \) satisfies the following condition, \(\exists x_0 \in C \ \exists \{a_n\} \subseteq (0, +\infty) \) with \(\liminf \alpha_n > 0 \ \exists \{\alpha_n\} \subseteq [0, 1], \ \exists \{\beta_n\} \subseteq [0, 1] \) such that

\[
\langle x - z, J(x - w_n) \rangle \geq \alpha_n \|x - w_n\|^2
\]

(2.1)

for all \(x \in C, z \in F(T_n) \), where, \(w_n = \beta_n T_0(x_0) + (1 - \beta_n) T_n(a_n x_0 + (1 - a_n)x) \).

Algorithm 2.1. Let \(\{T_n\} \) be a family of self-mappings of \(C \) with \(F \neq \emptyset \) which satisfies condition (2.1). Let \(\{x_n\}_{n=1}^{+\infty} \) be a sequence generated by the following algorithm.

\[
\begin{align*}
x_0 & \in C, n \in \mathbb{N}_0 \\
y_n & = \alpha_n x_0 + (1 - \alpha_n)x_n \\
z_n & = \beta_n T_0(x_0) + (1 - \beta_n) T_n(y_n) \\
C_n & = \{z \in C : \langle x_n - z, J(x_n - z_n) \rangle \geq a_n \|x_n - z_n\|^2\} \\
Q_n & = \{z \in C : \langle x_n - z, J(x_0 - x_n) \rangle \geq 0\} \\
x_{n+1} & = P_{C_n \cap Q_n}(x_0)
\end{align*}
\]

(2.2)

Theorem 2.2. Suppose \(C \) is a nonempty closed convex subset of a uniformly convex Banach space \(X \) whose norm is Gateaux differentiable and \(\{T_n\} \) is a family of self-mappings of \(C \) with \(F \neq \emptyset \) which satisfies the condition (2.1). Assume that

\((*) \) for every bounded sequence \(\{u_n\} \) in \(C \), \(\sum_{n=0}^{+\infty} g(\|u_{n+1} - u_n\|) < +\infty \) and \(\sum_{n=0}^{+\infty} a u_{n+1} - u_n \| < +\infty \) for some \(g \in C \) and some \(u \in [T_0(x_0), T_n(w)] \), where \(w \in [x_0, u_n] \) and \(a > 0 \) imply that \(w_n(u_n) \subseteq F \). Then the sequence \(\{x_n\} \) generated by Algorithm 2.1 converges strongly to \(P_F(x_0) \).

Proof. We split the proof into six steps.

Step 1. \(\{x_n\} \) is well defined.

Notice that \(C_n \) and \(Q_n \) are closed and convex sets for all \(n \in \mathbb{N}_0 \). On the other hand, condition (2.1) and the definition of \(C_n \) in Algorithm 2.1 imply that \(F(T_n) \subseteq C_n \) for all \(n \in \mathbb{N}_0 \). Hence \(F \subseteq C_n \) for all \(n \in \mathbb{N}_0 \). Since \(J(0) = 0 \), it follows from the definition of \(Q_n \) in Algorithm 2.1 that \(Q_n = C \) which implies that \(F \subseteq C_0 \cap Q_0 \).

Lemma 1.1 guarantees that there exists a unique element \(x_1 = P_{C_0 \cap Q_0}(x_0) \). By Lemma 1.2,

\[
\langle x_1 - z, J(x_0 - x_1) \rangle \geq 0
\]

for all \(z \in C_0 \cap Q_0 \) and hence by \(F \subseteq C_0 \cap Q_0 \) we get

\[
\langle x_1 - z, J(x_0 - x_1) \rangle \geq 0
\]
for all $z \in F$. Therefore, $F \subseteq Q_1$ and so apply the fact that $F \subseteq C_n$ for all $n \in \mathbb{N}_0$ we have $F \subseteq C_1 \cap Q_1$. Again, Lemma 1.1 guarantees that there exists a unique element $x_2 = P_{C_1 \cap Q_1}(x_0)$. Inductively, we find that $\{x_n\}$ is well defined.

Step 2. $\{x_n\}$ is a bounded sequence.
From $x_{n+1} = P_{C_n \cap Q_n}(x_0)$ and $F \subseteq C_n \cap Q_n$ for all $n \in \mathbb{N}_0$ we have

$$\|x_{n+1} - x_0\| \leq \|x_0 - P_F(x_0)\|$$

(2.3)

for all $n \in \mathbb{N}_0$, which implies that $\{x_n\}$ is a bounded sequence.

Step 3. $\lim_{n \to \infty} \|x_n - x_0\|$ exists.
Replace terms $x_{n+1} - x_0$ and $x_n - x_o$ respectively with x and y in Lemma 1.3,

$$\|x_n - x_0\|^2 \leq \|x_{n+1} - x_0\|^2 - 2\langle x_{n+1} - x_0, J(x_n - x_0) \rangle$$

and hence $x_{n+1} \in Q_n$ implies that $\|x_n - x_0\|^2 \leq \|x_{n+1} - x_0\|^2$ for all $n \in \mathbb{N}_0$; i.e., $\|x_n - x_0\|$ is an increasing sequence and so by Step 2 we find that $\lim_n \|x_n - x_o\|$ exists.

Step 4. $\sum_{n=0}^{\infty} g(\|x_{n+1} - x_n\|) < +\infty$ for some $g \in G$.
It follows from Lemma 1.4 that there exists $g \in G$ such that

$$\frac{x_n + x_{n+1}}{2} - x_0 \|^2 \leq \frac{1}{4} \|x_n - x_0\|^2 + \frac{1}{2} \|x_{n+1} - x_0\|^2 - \frac{1}{4} g(\|x_{n+1} - x_n\|)$$

and hence

$$g(\|x_{n+1} - x_n\|) \leq 2\|x_n - x_0\|^2 + 2\|x_{n+1} - x_0\|^2 - 4\|\frac{x_n + x_{n+1}}{2} - x_0\|^2$$

(2.4)

for all $n \in \mathbb{N}_0$. From Lemma 1.2 and the definition of Q_n we get $x_n = P_{Q_n}(x_0)$ and so by $x_{n+1} \in Q_n$ and convexity of Q_n we get $\frac{x_n + x_{n+1}}{2} \in Q_n$. Again, by $x_n = P_{Q_n}(x_0)$,

$$\|\frac{x_n + x_{n+1}}{2} - x_0\|^2 \geq \|x_n - x_0\|^2.$$

(2.5)

It follows from inequalities (2.4) and (2.5) that

$$g(\|x_{n+1} - x_n\|) \leq 2\|x_{n+1} - x_0\|^2 - 2\|x_n - x_0\|^2 \text{ for all } n \in \mathbb{N}_0.$$

(2.6)

That $\sum_{n=0}^{\infty} g(\|x_{n+1} - x_n\|) < +\infty$ follows from (2.6) and Step 3.

Step 5. $\sum_{n=0}^{\infty} g(a\|x_n - z_n\|) < +\infty$ for some $g \in G$ and $a > 0$.
Since $a_n > 0$ for all $n \in \mathbb{N}_0$ and $\lim inf a_n > 0$, there exists $a > 0$ for which $a_n \geq a$ for all $n \in \mathbb{N}_0$. Now, $x_{n+1} \in C_n$ guarantees that

$$\|x_n - x_{n+1}\| \|x_n - z_n\| \geq \langle x_n - x_{n+1}, J(x_n - z_n) \rangle \geq a_n \|x_n - z_n\|^2$$
and thus
\[a \| x_n - z_n \| \leq \| x_{n+1} - x_n \| \] (2.7)
for all \(n \in \mathbb{N}_0 \). That \(\sum_{n=0}^{+\infty} g(a \| x_n - z_n \|) < +\infty \) follows from (2.7), (1.1) and Step 4.

Step 6. \(\{ x_n \} \to P_F(x_0) \).

It follows from our assumption, Step 4 and Step 5 that \(w_n(x_n) \subseteq F \). Let the subsequence \(\{ x_n \} \) of \(\{ x_n \} \) converges weakly to \(w \in F \). Therefore, weakly lower semicontinuity of the norm and (2.3) imply that
\[\| P_F(x_0) - x_0 \| \leq \| w - x_0 \| \leq \lim_{i \to +\infty} \| x_n - x_0 \| \leq \| P_F(x_0) - x_0 \| \]
and hence \(x_n \to w = P_F(x_0) \).

Corollary 2.3. Suppose \(C \) is a nonempty closed convex subset of a uniformly convex Banach space \(X \) whose norm is Gateaux differentiable and \(\{ T_n \} \) is a family of self-mappings of \(C \) with \(F \neq \emptyset \) which satisfies the following condition.

(a) \(\exists x_0 \in C \) \(\exists \{ a_n \} \subseteq (0, +\infty) \) with \(\lim_{n} a_n > 0 \) \(\exists \{ \alpha_n \} \subseteq [0, 1] \) such that
\[\langle x - z, J(x - T_n(v_n)) \rangle \geq a_n \| x - T_n(v_n) \|^2 \]
for all \(x \in C \), \(z \in F(T_n) \), where, \(v_n = \alpha_n x_0 + (1 - \alpha_n)x \);

(b) for every bounded sequence \(\{ u_n \} \in C \), \(\sum_{n=0}^{+\infty} g(\| u_{n+1} - u_n \|) < +\infty \) and \(\sum_{n=0}^{+\infty} g(a \| u_n - u \|) < +\infty \) for some \(g \in G \) and some \(u \in [T_0(x_0), T_n(w)] \), where \(w \in [x_0, u_n] \) and \(a > 0 \) imply that \(w_n(u_n) \subseteq F \).

Then the sequence \(\{ x_n \} \) generated by the following algorithm converges strongly to \(P_F(x_0) \).

\[
\begin{align*}
\{ \ & n \in \mathbb{N}_0, \\
& y_n = \alpha_n x_0 + (1 - \alpha_n)x_n \\
& z_n = T_n(y_n) \\
& C_n = \{ z \in C : \langle x_n - z, J(x_n - z_n) \rangle \geq a_n \| x_n - z_n \|^2 \} \\
& Q_n = \{ z \in C : \langle x_n - z, J(x_n - x_n) \rangle \geq 0 \} \\
& x_{n+1} = P_{C_n \cap Q_n}(x_0) \} \end{align*} \]
(2.8)

Proof. All conditions of Theorem 2.2 hold for \(\beta_n = 0 \) and also in this case (2.2) reduces to (2.8). So Theorem 2.2 implies the result.

Corollary 2.4. Suppose \(C \) is a nonempty closed convex subset of a uniformly convex Banach space \(X \) whose norm is Gateaux differentiable and \(\{ T_n \} \) is a family of self-mappings of \(C \) with \(F \neq \emptyset \) which satisfies the following condition.

(a) \(\exists x_0 \in C \) \(\exists \{ a_n \} \subseteq (0, +\infty) \) with \(\lim_{n} a_n > 0 \) \(\exists \{ \beta_n \} \subseteq [0, 1] \)
\[\langle x - z, J(x - w_n) \rangle \geq a_n \| x - w_n \|^2 \]
for all $x \in C$, $z \in F(T_n)$, where, $w_n = \beta_nT_0(x_0) + (1 - \beta_n)T_n(x)$;

(b) for every bounded sequence $\{u_n\}$ in C, $\sum_{n=0}^{+\infty} g(\|u_{n+1} - u_n\|) < +\infty$ and $\sum_{n=0}^{+\infty} g(a\|u_n - T_n(u_n)\|) < +\infty$ for some $g \in G$, $w_n = \beta_nT_0(x_0) + (1 - \beta_n)T_n(u_n)$, and $a > 0$ imply that $w_n(u_n) \subseteq F$.

Then $\{x_n\}$ generated by the following algorithm converges strongly to $P_F(x_0)$.

$$
\begin{align*}
x_0 & \in C, n \in \mathbb{N}_0 \\
z_n & = \beta_nT_0(x_0) + (1 - \beta_n)T_n(x_n) \\
C_n & = \{z \in C : \langle x_n - z, J(x_n - z) \rangle \geq a_n\|x_n - z\|^2\} \\
Q_n & = \{z \in C : \langle x_n - z, J(x_0 - x_n) \rangle \geq 0\} \\
x_{n+1} & = P_{C_n \cap Q_n}(x_0)
\end{align*}
$$

(2.9)

Proof. Similar to Corollary 2.3, all conditions of Theorem 2.2 hold for $\alpha_n = 0$ and so with this assumption, (2.2) collapses to (2.9) which it completes the proof.

Corollary 2.5. Suppose C is a nonempty closed convex subset of a uniformly convex Banach space X whose norm is Gateaux differentiable and $\{T_n\}$ is a family of self-mappings of C with $F \neq \emptyset$ which satisfies the following conditions.

(a) $\exists\{a_n\} \subseteq (0, +\infty)$ with $\liminf_n a_n > 0$

$$
\langle x - z, J(x - T_n(x)) \rangle \geq a_n\|x - T_n(x)\|^2
$$

for all $x \in C$, $z \in F(T_n)$;

(b) for every bounded sequence $\{u_n\}$ in C, $\sum_{n=0}^{+\infty} g(\|u_{n+1} - u_n\|) < +\infty$ and $\sum_{n=0}^{+\infty} g(a\|u_n - T_n(u_n)\|) < +\infty$ for some $g \in G$ and $a > 0$ imply that $w_n(u_n) \subseteq F$.

Then $\{x_n\}$ generated by the following algorithm converges strongly to $P_F(x_0)$.

$$
\begin{align*}
x_0 & \in C, n \in \mathbb{N}_0 \\
C_n & = \{z \in C : \langle x_n - z, J(x_n - T_n(x_n)) \rangle \geq a_n\|x_n - T_n(x_n)\|^2\} \\
Q_n & = \{z \in C : \langle x_n - z, J(x_0 - x_n) \rangle \geq 0\} \\
x_{n+1} & = P_{C_n \cap Q_n}(x_0)
\end{align*}
$$

Proof. Put $\alpha_n = \beta_n = 0$ in Theorem 2.2.

Corollary 2.6. Suppose C is a nonempty closed convex subset of a real Hilbert space H and $\{T_n\}$ is a family of self-mappings of C with $F \neq \emptyset$ which satisfies the following conditions.

(a) $\exists x_0 \in C \\exists\{b_n\} \subseteq (-1, +\infty)$ with $\liminf_n b_n > -1$ and $\exists\{\alpha_n\} \subseteq [0, 1]$, $\exists\{\beta_n\} \subseteq [0, 1]$ such that

$$
\|w_n - z\|^2 \leq \|x - z\|^2 - b_n\|x - w_n\|^2
$$

for all $x \in C$, $z \in F(T_n)$, where, $v_n = \alpha_n x_0 + (1 - \alpha_n)x$ and $w_n = \beta_n T_0(x_0) + (1 - \beta_n)T_n(v_n)$;
(b) for every bounded sequence \(\{u_n\} \) in \(C \), \(\sum_{n=0}^{+\infty} \|u_{n+1} - u_n\|^2 < +\infty \) and \(\sum_{n=0}^{+\infty} (a\|u_n - q_n\|^2) < +\infty \), where \(q_n = \beta_n T_0(x_0) + (1 - \beta_n)T_n(p_n) \), \(p_n = \alpha_n x_0 + (1 - \alpha_n)u_n \) and \(a > 0 \) imply that \(w_n(u_n) \subseteq F \).

Then \(\{x_n\} \) generated by the following algorithm converges strongly to \(P_F(x_0) \).

\[
\begin{align*}
y_n &= \alpha_n x_0 + (1 - \alpha_n)x_n \\
z_0 &= T_0(x_0) \\
z_n &= \beta_n z_0 + (1 - \beta_n)T_n(y_n) \quad (n \geq 1) \\
C_n &= \{z \in C : \|z_n - z\|^2 \leq \|x_n - z\|^2 - b_n\|x_n - z_n\|^2\} \\
Q_n &= \{z \in C : \langle x_n - z, x_0 - x_n \rangle \geq 0\} \\
x_{n+1} &= P_{C_n \cap Q_n}(x_0).
\end{align*}
\tag{2.10}
\]

Proof. First we note that, for \(x \in C, z \in F(T_n), v_n = \alpha_n x_0 + (1 - \alpha_n)x \) and \(w_n = \beta_n T_0(x_0) + (1 - \beta_n)T_n(v_n) \), by our assumption we have \(\|w_n - z\|^2 \leq \|x - z\|^2 - b_n\|x - w_n\|^2 \) for all \(z \in F(T_n) \), if and only if

\[
\|w_n - x\|^2 + 2\langle w_n - x, x - z \rangle + \|x - z\|^2 \leq \|x - z\|^2 - b_n\|x - w_n\|^2
\]

if and only if \(\langle x - z, x - w_n \rangle \geq \frac{1 + b_n}{2}\|x - w_n\|^2 \). Then condition (2.1) satisfies for \(a_n = \frac{1 + b_n}{2} \). In a real Hilbert space \(H \), we have

\[
\|\lambda x + (1 - \lambda)y\|^2 = \lambda\|x\|^2 + (1 - \lambda)\|y\|^2 - \lambda(1 - \lambda)\|x - y\|^2
\]

for all \(x, y \in H \) and \(\lambda \in [0, 1] \), so, we can consider \(g_B(t) = t^2 \) for each bounded subset \(B \) of \(H \) in Lemma 1.4 and hence (*) holds. Then all assumptions of Theorem 2.2 hold which it implies that \(\{x_n\} \) converges strongly to \(P_F(x_0) \).

By putting \(\beta_n = 0, \alpha_n = 0 \) and \(\alpha_n = \beta_n = 0 \) in (2.10) we get the following results respectively.

Corollary 2.7. Suppose \(C \) is a nonempty closed convex subset of a real Hilbert space \(H \) and \(\{T_n\} \) is a family of self-mappings of \(C \) with \(F \neq \emptyset \) which satisfies the following conditions.

(a) \(\exists x_0 \in C \) \(\exists \{b_n\} \subseteq (-1, +\infty) \) with \(\liminf \limits_{n \to \infty} b_n > -1 \) and \(\exists \{\alpha_n\} \subseteq [0, 1] \) such that

\[
\|T_n(v_n) - z\|^2 \leq \|x - z\|^2 - b_n\|x - T_n(v_n)\|^2
\]

for all \(x \in C, z \in F(T_n) \), where, \(v_n = \alpha_n x_0 + (1 - \alpha_n)x \);

(b) for every bounded sequence \(\{u_n\} \) in \(C \), \(\sum_{n=0}^{+\infty} \|u_{n+1} - u_n\|^2 < +\infty \) and \(\sum_{n=0}^{+\infty} (a\|u_n - T_n(v_n)\|^2) < +\infty \), where \(v_n = \alpha_n x_0 + (1 - \alpha_n)u_n \) and \(a > 0 \) imply that \(w_n(u_n) \subseteq F \).

Then \(\{x_n\} \) generated by the following algorithm converges strongly to \(P_F(x_0) \).

\[
\begin{align*}
y_n &= \alpha_n x_0 + (1 - \alpha_n)x_n \\
z_n &= T_n(y_n) \\
C_n &= \{z \in C : \|z_n - z\|^2 \leq \|x_n - z\|^2 - b_n\|x_n - z_n\|^2\} \\
Q_n &= \{z \in C : \langle x_n - z, x_0 - x_n \rangle \geq 0\} \\
x_{n+1} &= P_{C_n \cap Q_n}(x_0).
\end{align*}
\]
Corollary 2.8. Suppose C is a nonempty closed convex subset of a real Hilbert space H and $\{T_n\}$ is a family of self-mappings of C with $F \neq \emptyset$ which satisfies the following conditions.

(a) $\exists x_0 \in C \exists \{b_n\} \subseteq (-1, +\infty)$ with $\liminf_n b_n > -1$ and $\exists \{\beta_n\} \subseteq [0, 1]$ such that $\|w_n - z\|^2 \leq \|x - z\|^2 - b_n \|x - w_n\|^2$

for all $x \in C$, $z \in F(T_n)$, where $w_n = \beta_n T_0(x_0) + (1 - \beta_n) T_n(x)$;

(b) for every bounded sequence $\{u_n\}$ in C, $\sum_{n=0}^{+\infty} \|u_{n+1} - u_n\|^2 < +\infty$ and $\sum_{n=0}^{+\infty} (a\|u_n - w_n\|)^2 < +\infty$, where $w_n = \beta_n T_0(x_0) + (1 - \beta_n) T_n(u_n)$ and $a > 0$ imply that $w_n(u_n) \subseteq F$.

Then $\{x_n\}$ generated by the following algorithm converges strongly to $P_F(x_0)$.

\[
\begin{align*}
z_0 &= T_0(x_0) \\
z_n &= \beta_n z_0 + (1 - \beta_n) T_n(x_n) \ (n \geq 1) \\
C_n &= \{z \in C : \|z_n - z\|^2 \leq \|x_n - z\|^2 - b_n \|x_n - z_n\|^2\} \\
Q_n &= \{z \in C : \langle x_n - z, x_0 - x_n \rangle \geq 0\} \\
x_{n+1} &= P_{C_n \cap Q_n}(x_0).
\end{align*}
\]

Corollary 2.9. [6] Suppose C is a nonempty closed convex subset of a real Hilbert space H and $\{T_n\}$ is a family of self-mappings of C with $F \neq \emptyset$ which satisfies the following conditions.

(a) $\exists \{b_n\} \subseteq (-1, +\infty)$ with $\liminf_n b_n > -1$ such that $\|T_n(x) - z\|^2 \leq \|x - z\|^2 - b_n \|x - T_n(x)\|^2$

for all $x \in C$, $z \in F(T_n)$;

(b) for every bounded sequence $\{u_n\}$ in C, $\sum_{n=0}^{+\infty} \|u_{n+1} - u_n\|^2 < +\infty$ and $\sum_{n=0}^{+\infty} \|u_n - T_n u_n\|^2 < +\infty$ imply that $w_n(u_n) \subseteq F$.

Then $\{x_n\}$ generated by the following algorithm converges strongly to $P_F(x_0)$.

\[
\begin{align*}
x_0 &= C \\
z_n &= T_n(x_n) \\
C_n &= \{z \in C : \|z_n - z\|^2 \leq \|x_n - z\|^2 - b_n \|x_n - z_n\|^2\} \\
Q_n &= \{z \in C : \langle x_n - z, x_0 - x_n \rangle \geq 0\} \\
x_{n+1} &= P_{C_n \cap Q_n}(x_0).
\end{align*}
\]

3 Acknowledgment

Masood Salehi is supported by the Islamic Azad University–Savakouh Branch and Vahid Dadashi is supported by the Islamic Azad University–Sari Branch.
References

