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Abstract

Let E be the ellipse with major and minor radii a and b respectively, and P
be its perimeter, then

P = lim
n→∞

4 tan
π

n
(a+ b+ 2

2m−2∑
k=2

√
a2 cos2

(2k − 2)π

n
+ b2 sin2 (2k − 2)π

n
),

where n = 2m. So without considering the limit, it gives a reasonable approxi-
mation for P , it means that we can choose n large enough such that the amount
of error be less than any given small number. On the other hand, the formula
satisfies both limit status b→ a and b→ 0 which give respectively P = 2πa and
P = 4a.

Keywords: Ellipse, Perimeter, Surrounding polygon.

1 introduction

Let E be the ellipse with cartesian equation x2

a2 + y2

b2 = 1. If P (E) refers to the
perimeter of E, then we have

P (E) = 4

∫ a

0

√
1 + (

dy

dx
)2 dx
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Unfortunately this integral dose not have an analytic solution, and so there are many
approximations f(a, b) for P (E), for example Ramanujan II, and Cantrell which are
as follows (one can find many such approximations in [1])

R(a, b) = π(a+ b)(1 +
3h

10 +
√

4− 3h
) , C(a, b) = 4(a+ b)− 2(4− π)

ab

Hp

where

h =
(a− b)2

(a+ b)2
, Hp = (

ap + bp

2
)

1
p

in this article we present an approximation based on some surrounding polygons
which are the images of surrounding regular polygons of a circle C under a transfor-
mation S which maps C onto E. If Pn be the perimeter of a surrounding n− gon of
E, we will see that Pn → P (E) as n → ∞, hence |Pn − P (E)| → 0. Meanwhile if
we put ε = |f(a, b)−P (E)|, there exist a natural number nε such that |Pnε−P (E)| < ε.

Maybe the oldest approximation be f(a, b) = π(a + b) which is the average of
2πa and 2πb, on the other hand the renowned lower bound for P (E) is 2π

√
ab .

Clearly we can use surrounded polygons instead of surrounding polygons, and then
we will obtain an approximation Qn such that Qn → P (E) as n → ∞ and we have
Qn < P (E) < Pn, hence for each n, Qn and Pn are ,respectively, lower and upper
bounds for P (E).

2 surrounding polygon approximation

Consider the circle C with radius b, and its surrounding polygons. We will compute
the coordinates of the corners using some trigonometry, if A(x1, y1) and B(x2, y2) be
two adjacent corners, then S(A)(abx1, y1) and S(B)(abx2, y2) are two adjacent corners
of a surrounding polygon of the ellipse E = S(C), where S : R2 → R2 is a map
defined by S(x, y) = (abx, y).

Lemma 2.1. The image of the circle C under the map S described above, is the
ellipse E, moreover if AB is a tangent segment to C at the point T , then S(A)S(B)
is a tangent segment to E at the point S(T ).

Proof. The equation of C is x2 +y2 = b2, we have to show that the point S(A)(abx, y)

satisfies the equation of E, to this end we have
( ab x)

2

a2 + y2

b2 = x2

b2 + y2

b2 = 1
b2 (x2 + y2) =

b2

b2 = 1. If A(x1, y1), B(x2, y2) and T (α, β) then we know that y′(α) = y2−y1
x2−x1

, we

have to show that Y ′(abα) = y2−y1
a
b (x2−x1)

, but this is true since Y (abα) = y(α) , therefore
a
bY
′(abα) = y′(α). Here y and Y are extracted from the equations of C and E,

respectively.
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Now consider the surrounding regular n-gon of C. For simplicity we consider the
first quarter of C, we also assume that C is centered at origin. We start with the
surrounding square and we make an octagon by drawing four tangent lines passing
through the points which are the intersections of C and the segments connecting the
center of C to the corners of the square. Each tangent line intersects two adjacent
edges of the square and makes two adjacent corners of the surrounding regular octagon
of C (Fig.1). We will continue this procedure to make any surrounding regular n-gon
of C such that n = 2m. Put N(0, b) , M(b, 0) and Let A1, A2, ..., Ap where p = 2m−2,
be the corners of the surrounding regular n-gon of C relevant to its first quarter. The
following lemma will help us not only to find Pn, but also to compute the coordinates
of Ak , 1 ≤ k ≤ p .
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Lemma 2.2. If Ak(xk, yk) and Ak+1(xk+1, yk+1) be two adjacent corners of the
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surrounding regular n-gon of C, then for 1 ≤ k ≤ p− 1 we have

xk+1 = xk + 2b tan
π

n
cos

2kπ

n
, yk+1 = yk − 2b tan

π

n
sin

2kπ

n

Proof. For 1 ≤ k ≤ p−1 , Ak+1 is obtained by rotating the point A1 by 2kπ
n clockwise,

hence ( xk+1
yk+1

)
=
(

cos 2kπ
n sin 2kπ

n

− sin 2kπ
n cos 2kπ

n

)
( x1
y1 )

so

xk+1 = x1 cos
2kπ

n
+ y1 sin

2kπ

n
, yk+1 = −x1 sin

2kπ

n
+ y1 cos

2kπ

n

The similar equations can be written for xk and yk, then we compute xk+1 − xk,
and yk+1 − yk , finally by using some trigonometry and keeping in mind that x1 =
b tan π

n , y1 = b are the coordinates of A1 , the proof will be completed.

Now S(Ak), 1 ≤ k ≤ p , are the corners of a surrounding n-gon of E and we have

S(N)(0, b) , S(M)(
a

b
b, 0) = (a, 0), and S(Ak)(

a

b
xk, yk) 1 ≤ k ≤ p

Note that we express the length of the segment AB again by AB, meanwhile it is
easy to verify that if AB is a horizontal segment, then S(A)S(B) = (ab )AB and for a
vertical segment AB, S(A)S(B) = AB, therefore we have

S(N)S(A1) =
a

b
b tan

π

n
= a tan

π

n
, S(Ap)S(M) = b tan

π

n

S(Ak)S(Ak+1) =

√
(
a

b
(xk+1 − xk))2 + (yk+1 − yk)2 =√

(2a tan
π

n
cos

2kπ

n
)2 + (2b tan

π

n
sin

2kπ

n
)2 = 2 tan

π

n

√
a2 cos2

2kπ

n
+ b2 sin2 2kπ

n

so, the perimeter of the surrounding n-gon of E is

Pn = 4(S(N)S(A1) + S(A2m−2)S(M) +

2m−2−1∑
k=1

S(Ak)S(Ak+1)) =

4(S(N)S(A1) + S(A2m−2)S(M) +

2m−2∑
k=2

S(Ak−1)S(Ak)) =

4(a tan
π

n
+ b tan

π

n
+ 2 tan

π

n

2m−2∑
k=2

√
a2 cos2

(2k − 2)π

n
+ b2 sin2 (2k − 2)π

n
) =

4 tan
π

n
(a+ b+ 2

2m−2∑
k=2

√
a2 cos2

(2k − 2)π

n
+ b2 sin2 (2k − 2)π

n
)



On The Perimeter of an Ellipse 5

Theorem 2.3. If P = limn→∞ Pn, then
i. P = P (E), the perimeter of E
ii. limb→a P = 2πa
iii. limb→0 P = 4a

Proof. i. First of all, note that for a fixed pair (a,b), Pn is decreasing (proof by
triangle inequality; see Fig.2 to compare P4 and P8) and bounded bellow ( Pn ≥
P (E) ), therefore it is convergent. Now we have

lim
n→∞

Pn = lim
n→∞

4(a+ b) tan
π

n
+

lim
n→∞

8 tan
π

n

n
4∑

k=2

√
a2 cos2

(2k − 2)π

n
+ b2 sin2 (2k − 2)π

n
=

4 lim
n→∞

2π

n
(

n
4∑

k=1

√
a2 cos2

(2k − 2)π

n
+ b2 sin2 (2k − 2)π

n
− a) =

4 lim
n→∞

π
2
n
4

n
4∑

k=1

√
a2 cos2

(k − 1)π2
n
4

+ b2 sin2 (k − 1)π2
n
4

=

4

∫ π
2

0

√
a2 cos2 θ + b2 sin2 θ dθ =

4

∫ a

0

√
1 +

b2x2

a2(a2 − x2)
dx = 4

∫ a

0

√
1 + (

dy

dx
)2 dx = P (E)

Here we have used the change of variable x = a sin θ

ii. Consider Pn and P as functions of b, defined on [0, a], clearly Pn is continu-
ous since it is a finite sum of continuous functions. To prove the continuity of P , we
refer the reader to [2, theorem 2.27] with g(x) = a√

a2−x2
. Now we have

1. [0, a] is compact,
2. Pn → P , pointwise on [0, a],
3. Pn(b) ≥ Pn+1(b) for all b ∈ [0, a] , n = 1, 2, 3, ... .

(Note that by an abuse of language, Pn+1 may be considered as P2n, in other words
we can formally define Pn+i = Pn for 1 ≤ i ≤ n − 1). Hence, we conclude that
Pn → P uniformly on [0, a], [3, theorem 7.13], so we are allowed to write

lim
b→a

P = lim
b→a

lim
n→∞

Pn(b) = lim
n→∞

lim
b→a

Pn(b) = lim
n→∞

4 tan
π

n
(2m−1a) =
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limn→∞4 tan
π

n
(
n

2
a) = 2πa

iii. lim
b→0

P = lim
b→0

lim
n→∞

Pn(b) = lim
n→∞

4 tan
π

n
(a+ 2

n
4∑

k=2

a cos
2(k − 1)π

n
) =

lim
n→∞

4 tan
π

n
(−a+ 2

n
4∑

k=1

a cos
2(k − 1)π

n
) = lim

n→∞
(−4a tan

π

n
)+

lim
n→∞

8 tan
π

n

n
4∑

k=1

a cos
2(k − 1)π

n
= lim
n→∞

8
π

n

n
4∑

k=1

a cos
2(k − 1)π

n
=

lim
n→∞

4a(
π
2
n
4

n
4∑

k=1

cos
(k − 1)π2

n
4

= 4a

∫ π
2

o

cosxdx = 4a

Note that we have used the fact that limn→∞
tan π

n
π
n

= 1.

We can call Pn an infinite-type approximation because it has a limit process,
so we may call a formula without limit process, a finite-type approximation. Since
Pn → P (E), for any given ε > 0 there exist a natural number N such that if n >
N , then |Pn − P | < ε, in other words choosing n large enough one may obtain a
good approximation to evaluate the perimeter of E. Let f(a, b) be any finite-type
approximation for P (E), there is a number n such that |Pn − P | < |f(a, b)− P | = ε.
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