[1] M. Ghasemi, M. Tavassoli Kajani, Application of He's homotopy perturbation
method for linear and nonlinear heat equations, Math. Scientic J. 1 (2008)
17-27.
[2] M. Ghasemi, M. Tavassoli Kajani, A. Azizi, The application of homotopy pertur-
bation method for solving Schrodinger equation, Math. Scientic J. 1 (5) (2009)
47-55.
[3] M. Ghasemi, M. Tavassoli Kajani, A. Davari, Numerical solution of two-
dimensional nonlinear dierential equation by homotopy perturbation method,
Appl. Math. Comput. 189 (2007) 341-345.
[4] M. Ghasemi, M. Tavassoli Kajani, E. Babolian, Numerical solutions of the non-
linear Volterra-Fredholm integral equations by using Homotopy perturbation
method, Appl. Math. Comput. 188 (2007) 446-449.
[5] M. Ghasemi, M. Tavassoli Kajani, E. Babolian, Application of He's homotopy
perturbation method to nonlinear integro-dierential equations, Appl. Math.
Comput. 188 (2007) 538-548.
[6] M. Ghasemi, M. Tavassoli Kajani, Application of He's homotopy perturbation
method to solve a diusion-convection problem, Math. Sci. Quarterly J. 4 (2010)
171-186.
[7] M. Ghasemi, M. Tavassoli Kajani, R. Khoshsiar Ghaziani, Numerical solution of
fth order KdV equations by homotopy perturbation method, Math. Sci. Quar-
terly J. (2011) In Press.
[8] S. Vahdati, Z. Abbas, M. Ghasemi, Application of Homotopy Analysis Method
to Fredholm and Volterra integral equations, Math. Sci. Quarterly J. 4 (2010)
267-282.
[9] J.H. He, Application of homotopy perturbation method to nonlinear wave equa-
tions, Chaos Solitons & Fractals 26 (2005) 695-700.
[10] J.H. He, Variational iteration method: a kind of nonlinear analytical technique:
some examples, Int. J. Nonlinear Mech. 34 (1999) 699-708.
[11] J.H. He, Homotopy perturbation technique, Comput. Methods Appl. Mech. En-
gng. 178 (1999) 257-262.
[12] J.H. He, Homotopy perturbation method: a new nonlinear analytical technique,
Appl. Math. Comput. 135 (2003) 73-79.
[13] J.H. He, A coupling method of homotopy technique and perturbation technique
for nonlinear problems, Int. J. Nonlinear Mech. 35 (2000) 37-43.
[14] J.H. He, A review on some new recently developed nonlinear analytical tech-
niques, Int. J. Nonlinear Sci. Numer. Simul. 1 (2000) 51-70.
[15] J.H. He, The homotopy perturbation method for nonlinear oscillators with dis-
continuities, Appl. Math. Comput. 151 (2004) 287-292.
[16] J.H. He, Comparison of homotopy perturbation method and homotopy analysis
method, Appl. Math. Comput. 156 (2004) 527-539.
[17] J.H. He, Bookkeeping parameter in perturbation methods, Int. J. Nonlinear Sci.
Numer. Simul. 2 (2001) 257-264.
[18] A.H. Nayfeh, Problems in Perturbation, John Wiley, New York, (1985).
[19] E.J. Parkes, B.R. Duy, An automated tanh-function method for nding solitary
wave solutions to non-linear evolution equations, Comput. Phys. Commun. 98
(1996), 288-300.