Mosleh, M., Abbasbandy, S., Otadi, M. (2011). A method for solving fully fuzzy linear system. Theory of Approximation and Applications, 7(2), 55-66.

M. Mosleh; S. Abbasbandy; M. Otadi. "A method for solving fully fuzzy linear system". Theory of Approximation and Applications, 7, 2, 2011, 55-66.

Mosleh, M., Abbasbandy, S., Otadi, M. (2011). 'A method for solving fully fuzzy linear system', Theory of Approximation and Applications, 7(2), pp. 55-66.

Mosleh, M., Abbasbandy, S., Otadi, M. A method for solving fully fuzzy linear system. Theory of Approximation and Applications, 2011; 7(2): 55-66.

^{1}Department of Mathematics, Islamic Azad University, Firuozkooh Branch, Firuozkooh, Iran.

^{2}Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran 14515/775, Iran.

Abstract

In this paper, a numerical method for nding minimal solution of a mn fully fuzzy linear system of the form Ax = b based on pseudo inverse calculation, is given when the central matrix of coecients is row full rank or column full rank, and where A~ is a non-negative fuzzy mn matrix, the unknown vector x is a vector consisting of n non-negative fuzzy numbers and the constant b is a vector consisting of m non-negative fuzzy numbers.

Article Title [Persian]

A method for solving fully fuzzy linear
system

Authors [Persian]

M. Mosleh^{1}; S. Abbasbandy^{2}; M. Otadi^{1}

^{1}Department of Mathematics, Islamic Azad University, Firuozkooh Branch,
Firuozkooh, Iran.

^{2}Department of Mathematics, Science and Research Branch, Islamic Azad
University, Tehran 14515/775, Iran.

Abstract [Persian]

In this paper, a numerical method for nding minimal solution of a mn fully fuzzy linear system of the form Ax = b based on pseudo inverse calculation, is given when the central matrix of coecients is row full rank or column full rank, and where A~ is a non-negative fuzzy mn matrix, the unknown vector x is a vector consisting of n non-negative fuzzy numbers and the constant b is a vector consisting of m non-negative fuzzy numbers.

Keywords [Persian]

Fuzzy number، Fuzzy linear system، Minimal solution

References

[1] S. Abbasbandy, A. Jafarian and R. Ezzati, Conjugate gradient method for fuzzy symmetric positive denite system of linear equations, Appl. Math. Comput. 171 (2005) 1184-1191. [2] S. Abbasbandy, R. Ezzati and A. Jafarian, LU decomposition method for solving fuzzy system of linear equations, Appl. Math. Comput. 172 (2006) 633-643.

[3] S. Abbasbandy, J.J. Nieto and M. Alavi, Tuning of reachable set in one dimensional fuzzy dierential inclusions, Chaos, Solitons & Fractals 26 (2005) 1337-1341. [4] S. Abbasbandy, M. Otadi and M. Mosleh, Minimal solution of general dual fuzzy linear systems, Chaos Solitons & Fractals 37 (2008) 1113-1124. [5] S. Abbasbandy, M. Otadi and M. Mosleh, Numerical solution of a system of fuzzy polynomials by fuzzy neural network, Inform. Sci. 178 (2008) 1948-1960. [6] T. Allahviranloo, Succesive over relaxation iterative method for fuzzy system of linear equations, Appl. Math. Comput. 162 (2005) 189-196. [7] T. Allahviranloo, Numerical methods for fuzzy system of linear equations, Appl. Math. Comput. 155 (2004) 493-502. [8] T. Allahviranloo, M. Afshar Kermani, Solution of a fuzzy system of linear equation,Appl. Math. Comput.175 (2006) 519-531. [9] B. Asady, S. Abbasbandy and M. Alavi, Fuzzy general linear systems, Appl. Math. Comput. 169 (2005) 34-40. [10] S. Barnet, Matrix Methods and Applications, Clarendon Press, Oxford, 1990. [11] M. Caldas and S. Jafari, -Compact fuzzy topological spaces, Chaos Solitons & Fractals 25 (2005) 229-232. [12] M. Dehghan, B. Hashemi, M. Ghatee, Solution of the fully fuzzy linear systems using iterative techniques, Chaos Solitons & Fractals 34 (2007) 316-336. [13] M. Dehghan, B. Hashemi, M. Ghatee, Computational mathods for solving fully fuzzy linear systems, Appl. Math. Comput. 179 (2006) 328-343. [14] D. Dubois and H. Prade, Operations on fuzzy numbers, J. Systems Sci. 9 (1978) 613-626. [15] D. Dubois and H. Prade, Systems of linear fuzzy constraints. Fuzzy Sets Sys. 3 (1980) 37-48. [16] G. Feng and G. Chen, Adaptive control of discrete-time chaotic systems: a fuzzy control approach, Chaos Solitons & Fractals 23 (2005) 459-467.

[17] M. Friedman, Ma Ming and A. Kandel, Fuzzy linear systems, Fuzzy Sets Sys. 96 (1998) 201-209. [18] M. Friedman, Ma Ming and A. Kandel, Duality in fuzzy linear systems, Fuzzy Sets and Sys. 109 (2000) 55-58. [19] R. Goetschel, W. Voxman, Elementary calculus, Fuzzy Sets and Systems 18 (1986) 31-43. [20] W. Jiang and Q. Guo-Dong and D. Bin, H1 Variable universe adaptive fuzzy control for chaotic system, Chaos Solitons & Fractals 24 (2005) 1075-1086. [21] A. Kaufmann and M. M. Gupta, Introduction Fuzzy Arithmetic, Van Nostrand Reinhold, New York, 1985. [22] S . Muzzioli and H. Reynaerts, Fuzzy linear systems of the form A1x+b1 = A2x + b2, Fuzzy Sets and Sys. 157 (2006) 939-951. [23] J. H. Park, Intuitionistic fuzzy metric spaces, Chaos Solitons & Fractals 22 (2004) 1039-1046. [24] X. Wang, Z. Zhong and M. Ha, Iteration algorithms for solving a system of fuzzy linear equations, Fuzzy Sets and Sys. 119 (2001) 121-128. [25] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning, Inform. Sci. 8 (1975) 199-249.