Hosseinzadeh-Lotfi, F., Izadikhah, M., Roostaee, R., Rostamy-Malkhalifeh, M. (2011). A goal programming procedure for ranking decision making units in DEA. Theory of Approximation and Applications, 7(2), 19-38.

Farhad Hosseinzadeh-Lotfi; Mohammad Izadikhah; R. Roostaee; Mohsen Rostamy-Malkhalifeh. "A goal programming procedure for ranking decision making units in DEA". Theory of Approximation and Applications, 7, 2, 2011, 19-38.

Hosseinzadeh-Lotfi, F., Izadikhah, M., Roostaee, R., Rostamy-Malkhalifeh, M. (2011). 'A goal programming procedure for ranking decision making units in DEA', Theory of Approximation and Applications, 7(2), pp. 19-38.

Hosseinzadeh-Lotfi, F., Izadikhah, M., Roostaee, R., Rostamy-Malkhalifeh, M. A goal programming procedure for ranking decision making units in DEA. Theory of Approximation and Applications, 2011; 7(2): 19-38.

A goal programming procedure for ranking decision making units in DEA

^{1}Department of Mathematics, Islamic Azad University, Science and Research Branch, Tehran, Iran.

^{2}Department of Mathematics, Islamic Azad University, Arak Branch, Arak Branch, Iran.

Abstract

This research proposes a methodology for ranking decision making units by using a goal programming model.We suggest a two phases procedure. In phase 1, by using some DEA problems for each pair of units, we construct a pairwise comparison matrix. Then this matrix is utilized to rank the units via the goal programming model.

Article Title [Persian]

A goal programming procedure for ranking
decision making units in DEA

Authors [Persian]

Farhad Hosseinzadeh-Lotfi^{1}; Mohammad Izadikhah^{2}; R. Roostaee^{2}; Mohsen Rostamy-Malkhalifeh^{1}

^{1}Department of Mathematics, Islamic Azad University, Science and Research
Branch, Tehran, Iran.

^{2}Department of Mathematics, Islamic Azad University, Arak Branch, Arak
Branch, Iran.

Abstract [Persian]

This research proposes a methodology for ranking decision making units by using a goal programming model.We suggest a two phases procedure. In phase 1, by using some DEA problems for each pair of units, we construct a pairwise comparison matrix. Then this matrix is utilized to rank the units via the goal programming model.

Keywords [Persian]

data envelopment analysis، Pairwise comparison matrix، Goal
programming، Ranking

References

[1] N. Adler, L. Friedman, Z. Sinuany-Stern, Review of ranking methods in data envelopment analysis context, European J. Operational Research 140 (2002) 249{265. [2] P. Andersen, N.C. Petersen, A procedure for ranking ecient units in data envelopment analysis, Management Sci. 39 (1993) 1261{1264.

[3] V. Belton, An IDEA-integrating data envelopment analysis with multiple criteria analysis In: Goicochea, A., Duckstein, L., Zionts, S. (Eds.), Proceedings of the Ninth International Conference on Multiple Criteria Decision Making: Theory and Applications in Business, Industry and Commerce. Springer Verlag, Berlin, (1992) 71{79. [4] V. Belton and S.P. Vickers, Demystifying DEA -a visual interactive approach based on multiple criteria analysis, J. Opl. Res. Soc. 44 (1993), 883{896. [5] C-T. Chang, A modied goal programming model for piecewise linear functions, Euro. J. Operatational Research 139 (2002) 62{67. [6] A. Charnes, W. W. Cooper and E. Rhodes, Measuring the eciency of decision making units, Euro. J. Operatational Research 2 (1978) 429{444. [7] A. Charnes, W. W. Cooper, Management Model and Industrial Application of Linear Programming, vol. 1, Wiley, New York, (1961). [8] G.X. Chen and M. Deng, A cross-dependence based ranking system for ecient and inecient units in DEA, Expert Sys. Appl. 38 (2011) 9648{ 9655. [9] W.D. Cook and M. Kress, Data envelopment model for aggregating preference ranking, Management Sci. 36 (1990) 1302{1310. [10] W. D. Cook, M. Kress and L. Seiford, Prioritization models for frontier decision making units in DEA, Euro. J. Operatational Research 59 (1992) 319{323. [11] J.R. Doyle and R.H Green, Data envelopment analysis and multiple criteria decision making. Omega 21 (1993) 713{715. [12] P.C. Fishburn, Expected utility: an anniversary and a new era. J. Risk and Uncertainty, 1 (1988) 267{283. [13] R.B. Flavell, A new goal programming, Omega 4 (1976) 731{732. [14] A. Hadi-Vencheh and M.N. Mokhtarian, On the issue of non-zero weights in preference voting and aggregation, Math. Sci. J. 5, (2010) 11{19. [15] N. Hibiki and T. Sueyoshi, DEA sensitivity analysis by changing a reference set: Regional contribution to Japanese industrial development, Omega 27 (1999) 139{153.

[16] J.P. Ignizio, Introduction to Linear Goal Programming, Sage, Beverly, Hills, CA (1985). [17] M. Izadikhah, Ranking units with interval data based on ecient and inecient frontiers, Math. Sci. J. 3(2007) 49{57. [18] G.R. Jahanshahloo, F. Hosseinzadeh Lot, N. Shoja, G. Tohidi and S. Razavyan, Ranking using l1-norm in data envelopment analysis, Appl. Math. Comput. 153 (2004) 215{224. [19] G.R. Jahanshahloo, H.V. Junior, F. Hosseinzadeh Lot and D. Akbarian, A new DEA ranking system based on changing the reference set, Euro. J. Operatational Research 181 (2007) 331{337. [20] G.R. Jahanshahloo, F. Hosseinzadeh Lot, M. Khanmohammadi, M. Kazemimanesh and V. Rezaie, Ranking of units by positive ideal DMU with common weights, Expert Sys. Appl. 37 (2010) 7483{7488. [21] G.R. Jahanshahloo, M. Rostamy-Malkhalifeh and S. Izadi-Boroumand, A comment on Supply chain DEA: production possibility set and performance evaluation model", Math. Sci. J. 7 (2011) 79{87. [22] R.L. Keeney and H. Raia, Decision Making with Multiple Objectives. Wiley, New York, (1976). [23] R.L. Keeney, Decision analysis: an overview, Operations Research, 30 (1982) 803{838. [24] M. khodabakhshi and N. Aryavash, Input congestion, technical ineciency and output reduction in fuzzy data envelopment analysis, Math. Sci. J. 6 (2011) 45{60. [25] Y.J. Lai and C.L. Hwang, Fuzzy Multiple Objective Decision Making- Methods and Applications, Springer-Verlag, (1994). [26] S. M. Lee, Goal Programming for Decision Analysis, Auerbach, Philadelphia, PA, (1972). [27] S. Li, G. R. Jahanshahloo and M. Khodabakhshi, A super-eciency model for ranking ecient units in data envelopment analysis, Appl. Math. Comput. 184 (2007) 638{648. [28] F-H.F. Liu and H.H. Peng, Ranking of units on the DEA frontier with common weights, Computers and Operations Research, 35 (2008) 1624{ 1637.

[29] S. Mehrabian, M.R. Alirezaee and G.R. Jahanshahloo, A complete eciency ranking of decision making units in data envelopment analysis, Computational Optimization and Appl., 14 (1999) 261{266. [30] M. Oral, O. Kettani and P. Lang, A methodology for collective evaluation and selection of industrial RD projects. Management Sci. 37 (1991) 871- 885. [31] F. Rezai Balf, H. Zhiani Rezai, G.R. Jahanshahloo and F. Hosseinzadeh Lot, Ranking ecient DMUs using the Tchebyche norm, Appl. Math. Mod. 36 (2012) 46{56. [32] C. Romero, Extended lexicographic goal programming: A unifying approach, Omega 29 (2001) 63{71. [33] T.L. Saaty, The Analytic Hierarchy Process. McGraw-Hill, New York, (1980). [34] M.J. Schniederjans, Goal Programming: Methodology and Applications, Kluwer, Boston, MA, (1995). [35] L.M. Seiford and J. Zhu, Infeasibility of super eciency data envelopment analysis models, INFOR, 37 (1999) 174{187. [36] T.R. Sexton, R.H. Silkman and A.J. Hogan, Data envelopment analysis: Critique and extensions, in: R.H. Silkman (Ed.), Measuring Eciency: An Assessment of Data Envelopment Analysis, Jossey-Bass, San Francisco, CA, (1986) 73{105. [37] Z. Sinuany-Stern and A. Mehrez, Discrete multiattribute utility approach to project selection. J. Opl. Res. Soc. 38 (1987) 1135{1139. [38] Z. Sinuany-Stern, A. Mehrez and Y. Hadad, An AHP/DEA methodology for ranking decision making units. Intl. Trans. Op. Res.. 7 (2000) 109{124. [39] T. J. Stewart, Data envelopment analysis and multiple criteria decision making: a response. Omega, 22 (1994) 205{206. [40] M. Tamiz, D. Jones and C. Romero, Goal programming for decision making: An overview of the current state-of-the-art, Euro. J. Operatational Research 111 (1998) 567{581. [41] B. Vitoriano and C. Romero, Extended interval goal programming, J. Opl. Res. Soc. 50 (1999) 1280{1283.

[42] Y-M. Wang, Y. Luo and L. Liang, Ranking decision making units by imposing a minimum weight restriction in the data envelopment analysis. J. Comput. Appl. Math. 223 (2009) 469-484. [43] Y-M. Wang, Y. Luo and Y-X. Lan, Common weights for fully ranking decision making units by regression analysis. Expert Sys. Appl. 38 (2011) 9122{9128. [44] Y-M. Wang and T.M.S. Elhag, A goal programming method for obtaining interval weights from an interval comparison matrix. Euro. J. Operational Research, 177 (2007) 458{471. [45] J. Zhu, Super-eciency and DEA sensitivity analysis, Euro. J. Operational Research, 129 (2001) 443{455.