Hilbert modules over pro-C*-algebras

Document Type: Research Articles


1 دانشگاه آزاد واحد علوم و تحقیقات تهران

2 دانشگاه آزاد واحد علوم وتحقیقات تهران


In this paper, we generalize some results from Hilbert C*-modules to pro-C*-
algebra case. We also give a new proof of the known result that l2(A) is a
Hilbert module over a pro-C*-algebra A.

[1] H. J. Borchers, On the algebra of test function, K.C.P. 25, IRMA, II, 15
(1973), 1-14.
[2] M. Dubois-Violette, A generalization of the classical moment on -algebras
with applications to relativistic quantum theory, I. Comm. Math. Phys. , 43
(1975), 225-254.
[3] A. Inoue, Locally C*-algebras, Mem. Fac. Sci. Kyushu Univ. Ser. A, 25
(1971), No. 2, 197-235.
[4] M. Joita, The stabilization theorem for Hilbert modules over locally C*-
algebras, The 3rd International Conference on Topological Algebra and
Applications, (ICTAA3), Oulu, Finland, July 2-6, 2001.
[5] M. Joita, Strict completely positive linear maps between locally C*-algebras
and representations on Hilbert modules, J. London Math. (2) 66 (2002),
[6] M. Joita, On Hilbert modules over locally C*-algebras, II, Period. Math.
Hungar. 51 (1) (2005) 27-36.
[7] M. Joita, On bounded module maps between Hilbert modules over locally
C*-algebras, Acta Math. Univ. Comenianae. Vol. LXXIV , 1 (2005), pp.
[8] A. Khosravi, M. S. Asgari, Frames and bases in Hilbert modules over
locally C*-algebras, International Journal of Pure and Applied Mathematics,
Volume 14 , No. 2 (2004), 169-187.

[9] E. C. Lance, Hilbert C*-modules, A toolkit for operator algebraists, London
Math. Soc. Lecture Note Series 210. Cambridge Univ. Press, Cambridge,
[10] A. Mallios, Hermitian K-theory over Topological -Algebras, J. Math.
Anal. Appl., 106 (1985), No. 2, 454-539.
[11] N. C. Phillips, Inverse limits of C*-algebras, J. Operator Theory 19
(1988), 159-195.
[12] Yu. I. Zhuraev, F. Sharipov, Hilbert modules over locally C*-algebra,
Preprint, posted on Arxiv Org. Math. OA/0011053 V3 (2001).