• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Editorial Staff
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
Theory of Approximation and Applications
Articles in Press
Current Issue
Journal Archive
Volume Volume 13 (2019)
Volume Volume 12 (2018-2019)
Volume Volume 11 (2016-2017)
Volume Volume 10 (2014-2015)
Volume Volume 9 (2013-2014)
Volume Volume 8 (2012-2013)
Issue Issue 2
Issue Issue 1
Volume Volume 7 (2011-2012)
Volume Volume 6 (2010-2011)
کمالی, Ù., مظاهری, Ù., خاده زاده, Ù., اردکانی, Ù. (2011). Best approximation by closed unit balls. Theory of Approximation and Applications, 8(1), 35-44.
ه.ر. کمالی; ه مظاهری; ه.ر. خاده زاده; ه اردکانی. "Best approximation by closed unit balls". Theory of Approximation and Applications, 8, 1, 2011, 35-44.
کمالی, Ù., مظاهری, Ù., خاده زاده, Ù., اردکانی, Ù. (2011). 'Best approximation by closed unit balls', Theory of Approximation and Applications, 8(1), pp. 35-44.
کمالی, Ù., مظاهری, Ù., خاده زاده, Ù., اردکانی, Ù. Best approximation by closed unit balls. Theory of Approximation and Applications, 2011; 8(1): 35-44.

Best approximation by closed unit balls

Article 4, Volume 8, Issue 1, Winter and Spring 2011, Page 35-44  XML PDF (301.01 K)
Document Type: Research Articles
Authors
ه.ر. کمالی1; ه مظاهری2; ه.ر. خاده زاده2; ه اردکانی2
1دانشگاه آزاد اردکان
2دانشگاه یزد
Abstract
We obtain a sucint and nesessery theoreoms simple for compactness and
weakly compactness of the best approximate sets by closed unit balls. Also we
consider relations Kadec-Klee property and shur property with this objects.
These theorems are extend of papers mohebi and Narayana.
References
[1] F. Deutsch, Best approximation in inner product spaces., CMS Books in
Mathematics/Ouvrages de Mathmatiques de la SMC, 7. Springer-Verlag,
New York, 2001.
[2] H. Mohebi, On quasi-Chebyshev subspaces of Banach spaces. J. Approx.
Theory 107 (2000), no. 1, 87-95.
[3] H. Mohebi, On quasi-Chebyshev subspaces of Banach spaces. J. Approx.
Theory 107 (2000), no. 1, 87-95.
[4] Narayana, Darapaneni, T. S. S. R. K. Rao, Some remarks on quasi-
Chebyshev subspaces. J. Math. Anal. Appl. 321 (2006), no. 1, 193{197.
[5] I. Singer, The theory of best approximation and functional analysis.
Conference Board of the Mathematical Sciences Regional Conference
Series in Applied Mathematics, No. 13. 1974.
[6] I. Singer, Best approximation in normed linear spaces by elements of linear
subspaces. Springer-Verlag, New York-Berlin 1970.
4

Statistics
Article View: 542
PDF Download: 322
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by sinaweb.