• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Editorial Staff
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
Theory of Approximation and Applications
Articles in Press
Current Issue
Journal Archive
Volume Volume 13 (2019)
Volume Volume 12 (2018-2019)
Volume Volume 11 (2016-2017)
Volume Volume 10 (2014-2015)
Volume Volume 9 (2013-2014)
Issue Issue 2
Issue Issue 1
Volume Volume 8 (2012-2013)
Volume Volume 7 (2011-2012)
Volume Volume 6 (2010-2011)
ویسه, Ù. (2012). A note on positive de niteness and stability of interval matrices. Theory of Approximation and Applications, 9(1), 105-113.
هانا ویسه. "A note on positive de niteness and stability of interval matrices". Theory of Approximation and Applications, 9, 1, 2012, 105-113.
ویسه, Ù. (2012). 'A note on positive de niteness and stability of interval matrices', Theory of Approximation and Applications, 9(1), pp. 105-113.
ویسه, Ù. A note on positive de niteness and stability of interval matrices. Theory of Approximation and Applications, 2012; 9(1): 105-113.

A note on positive de niteness and stability of interval matrices

Article 9, Volume 9, Issue 1, Winter and Spring 2012, Page 105-113  XML PDF (266.76 K)
Document Type: Research Articles
Author
هانا ویسه
دانشگاه آزاد واحد همدان
Abstract
It is proved that by using bounds of eigenvalues of an interval matrix, some
conditions for checking positive de niteness and stability of interval matrices
can be presented. These conditions have been proved previously with various
methods and now we provide some new proofs for them with a unity method.
Furthermore we introduce a new necessary and sucient condition for checking
stability of interval matrices.
References
[1] J. Rohn, Checking positive de niteness or stability of symmetric
interval matrices is NP-hard, Commentationes Mathematicae
Universitatis Carolinae. 35 (1994) 795{797.
[2] J. Rohn, Checking properties of interval matrices, Technical Report
686, Institute of Computer Science, Academy of Sciences of the
Czech Republic, Prague, September 1996.
[3] R. Farhadsefat, T. Lot , J. Rohn, A note on regularity and positive
de niteness of interval matrices, Cent. Eur. J. Math. 10(1) (2012)
322{328.
[4] M. Mansour, Robust stability of interval matrices, Proceeding of the
28th Conference on Decision and Control, Tampa, FL. (1989) 46{51.
[5] J. Rohn, A Handbook of Results on Interval Linear Problems,
Prague: Czech Academy of Sciences, 2005.
[6] J. Rohn, Positive de niteness and stability of interval matrices,
SIAM J. Matrix Anal. Appl. 15(1) (1994) 175{184.
[7] S. Poljak, J. Rohn, Checking roboust nonsingularity is NP-hard,
Math. Control Signals Syst. 6(1) (1993) 1{9.
[8] A. S. Deif, The interval eigenvalue problem, Z. Angew. Math. Mech.
71(1) (1991) 61{64.
[9] M. Hladik, D. Daney, E. P. Tsigaridas, Bounds on real eigenvalues
and singular values of interval matrices, SIAM J. Matrix Anal. Appl.
31(4) (2010) 2116{2129.

[10] J. Rohn, Bounds on eigenvalues of interval matrices, ZAMM, Z.
Angew. Math. Mech. 78(Suppl. 3) (1998) S1049{S1050.
[11] J. Rohn, Interval matrices: Singularity and real eigenvalues, SIAM
Journal on Matrix Analysis and Applications. 14(1) (1993) 82{91.
[12] J. Rohn, A. Deif, On the range of eigenvalues of an interval matrix,
Comput. 47(3-4) (1992) 373{377.
[13] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge:
Cambridge University Press, 1985.
[14] J. Stoer and R. Bulrisch, Introduction to Numerical Analysis,
Springer-Verlag, Berlin, 1980.

Statistics
Article View: 434
PDF Download: 315
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by sinaweb.