Ù‚Ù„ÛŒ Ø²Ø§Ø¯Ù‡, Ù. (2012). Common fixed point theorems of contractive mappings sequence in partially ordered G-metric spaces. Theory of Approximation and Applications, 9(1), 31-45.

Ù„ÛŒÙ„Ø§ Ù‚Ù„ÛŒ Ø²Ø§Ø¯Ù‡. "Common fixed point theorems of contractive mappings sequence in partially ordered G-metric spaces". Theory of Approximation and Applications, 9, 1, 2012, 31-45.

Ù‚Ù„ÛŒ Ø²Ø§Ø¯Ù‡, Ù. (2012). 'Common fixed point theorems of contractive mappings sequence in partially ordered G-metric spaces', Theory of Approximation and Applications, 9(1), pp. 31-45.

Ù‚Ù„ÛŒ Ø²Ø§Ø¯Ù‡, Ù. Common fixed point theorems of contractive mappings sequence in partially ordered G-metric spaces. Theory of Approximation and Applications, 2012; 9(1): 31-45.

Common fixed point theorems of contractive mappings sequence in partially ordered G-metric spaces

[3] M. Abbas, B. Rhoades, Common xed point results for non- commuting mappings without continuity in generalized metric spaces,Appl. Math. Comput. 215 (2009) 262-269. [4] L.B. Ciric, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc. 45 (1974) 267-273. [5] L.B. Ciric, Coincidence of xed points for maps on topological spaces, Topology Appl. 154 (2007) 3100-3106. [6] L.B. Ciric, S.N. Jsic, M.M. Milovanovic, J.S. Ume, On the steepest descent approximation method for the zeros of generalized accretive oprators,Nonlinear Anal-TMA.69 (2008) 763-769. [7] B.C. Dhoage, Proving xed point theorems in D-metric spaces via general existence principles,J. Pure Appl. Math. 34 (2003) 609-628. [8] J.X. Fang, Y. Gao, Common xed point theorems under stric contractive conditions in Menger space, Nonlinear Anal-TMA. 70 (2006) 184-193. [9] T. Gnana Bhaskar, V. Lakshmikantham, J. Vasundhara Devi, Monotone interativ technique for functional dierential equations with retardation and anticipation, Nonlinear Anal-TMA.66 (2007) 12237-2242. [10] T. Gnana Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal- TMA. 65 (2006) 1379-1393. [11] N. Hussain, Common xed point in best approximation for Banach opaerator pairs with Ciric type I-contractions, J. Math. Anal. Appl. 338 (2008) 1351-1363. [12] J.J. Nieto, R.R. Lopez, Existence and uniqueness of xed point in partially ordered sets and applications to ordinary dierential equations, Acta Math. Sin. Eng. Ser. 23 (2007) 2205-2212. [13] D. O'Regan, R. Saadati, Nonlinear contraction theorems in probabilistic spaces, Appl. Math. Comput. 195 (2008) 86-93. 43 [14] E. Firouz, S. J. Hosseini Ghoncheh, Common xed point theorem for w-distance with new integral type contraction, Mathematics Scientic Journal. 8 (2013) 33{39. [15] H. Soleimani, S. M. Vaezpour, M. Asadi, Fixed point theorems and their stability in metric trees, Mathematics Scientic Journal. 8 (2012) 109{116. [16] J.J. Nieto, R. Rodriguez-Lopez, Contractive mapping theorems in partally ordered sets and applications to ordinary dierential eqquations, order. 22 (2005) 223-239. [17] A.C.M. Ran, M.C.B. Reurings, A xed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004) 1435-1443. [18] A. Petrusel, L.A. Rus, Fixed point theorems in ordered L-spaces, Proc. Amer. Math. Soc. 134 (2006) 411-418. [19] Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2006) 289-297. [20] Z. Mustafa, F. Awawded, W. Shantanawi, Fixed point theorem for expansive mappings in G-metric spaces, Int. J. Contemp. Math. Sciences. 5 (2010) 2463-2472. [21] S. Manro, S.S. Bhatia, S. Kumar, Expansion mappings theorems in G-metric spaces, J. Contemp. Math. Sciences. 5 (2010) 2529-2535. [22] Z. Mustafa, T. Obiedat, F. Awawdeh, Some xed point theorems for mapping on complete G-metric space, Fixed Point theory Appl. 12(2008) Article ID 189870. [23] Z. Mustafa, B. Sims, Fixed point theorems for contractive mappings in complete G-metric spaces, Fixed Point theory Appl. 10 (2009) Article ID 917175. [24] W. Shatanawi, Fixed point theory for contractive mappings satisfying -maps in G-metric spaces, Fixed Point theory Appl. 9 (2010) Article ID 181650. [25] L. Gajic, On a common xed point for sequence of selfmappings in generalized metric space, J. Math. 36 (2006) 153-156. 44 [26] R. Saadati, S.M. Vaezpour, P. Vetro, B.E. Rhoades, Fixed point theorems in generalized partially ordered G-metric spaces, Math. Comput. Model. 52 (2010) 797-801. [27] O. Kada, T. Suzuki, W. Takahashi, Nonconvex minimization theorems and xed point theorems in complete metric space, Math. Japonica. 44 (1996) 381-391. [28] L. Gholizadeh, R. Saadati, W. Shatanawi S. M. Vaezpour, Contractive mapping in generalized, ordered metric spaces with application in integral equations, Math. Prob. Engineering. 2011 (2011) Article ID 380784. [29] L. Gholizadeh, A xed point theorem in generalized ordered metric spaces with its application, J. Nonlinear Sci. Appl. 6 (2013) 244{ 251.