2012
9
1
1
0
Approximation of the n-th Root of a Fuzzy Number by Polynomial Form Fuzzy Numbers
Approximation of the n-th Root of a Fuzzy
Number by Polynomial Form Fuzzy
Numbers
2
2
In this paper we introduce the root of a fuzzy number, and we present aniterative method to nd it, numerically. We present an algorithm to generatea sequence that can be converged to n-th root of a fuzzy number.
1
In this paper we introduce the root of a fuzzy number, and we present aniterative method to nd it, numerically. We present an algorithm to generatea sequence that can be converged to n-th root of a fuzzy number.
1
16
Majid
Amirfakhrian
مجید
امیر فخریان
استادیار دانشگاه آزاد اسلامی واحد تهران مرکز
استادیار دانشگاه آزاد اسلامی واحد تهران مرکز
Iran
amirfakhrian@iauctb.ac.ir
Application of variational iteration method for solving singular two point boundary value problems
Application of variational iteration method
for solving singular two point boundary
value problems
2
2
In this paper, He's highly prolic variational iteration method is applied ef-fectively for showing the existence, uniqueness and solving a class of singularsecond order two point boundary value problems. The process of nding solu-tion involves generation of a sequence of appropriate and approximate iterativesolution function equally likely to converge to the exact solution of the givenproblem which being processed out and improvised on its own at every step re-cursively. Moreover, Illustrative examples available to the context in literaturewhen treated with, by application of such proposed method fetch encouragingresults so as to justify and reveal its eciency and usefulness of the method.
1
In this paper, He's highly prolic variational iteration method is applied ef-fectively for showing the existence, uniqueness and solving a class of singularsecond order two point boundary value problems. The process of nding solu-tion involves generation of a sequence of appropriate and approximate iterativesolution function equally likely to converge to the exact solution of the givenproblem which being processed out and improvised on its own at every step re-cursively. Moreover, Illustrative examples available to the context in literaturewhen treated with, by application of such proposed method fetch encouragingresults so as to justify and reveal its eciency and usefulness of the method.
17
29
Shadan
Sadigh Behzadi
شادان
صدیق بهزادی
دانشگاه آزاد اسلامی واحد قزوین
دانشگاه آزاد اسلامی واحد قزوین
Iran
shadan_behzadi@yahoo.com
Common fixed point theorems of contractive mappings sequence in partially ordered G-metric spaces
Common fixed point theorems of
contractive mappings sequence in partially
ordered G-metric spaces
2
2
We consider the concept of Ω-distance on a complete partially ordered G-metric space and prove some common fixed point theorems.
1
We consider the concept of Ω-distance on a complete partially ordered G-metric space and prove some common fixed point theorems.
31
45
Leila
Gholizadeh
لیلا
قلی زاده
دانشگاه آزاد واحد علوم و تحقیقات تهران
دانشگاه آزاد واحد علوم و تحقیقات تهران
Iran
l.gholizade@gmail.com
[[1] B. Ahmad, M. Ashraf, B. Rhoades, Fixed point theorem for##expansive mappings in G-metric spaces, J. Pure Appl. Math. 32##(2001) 1513-1518. ##[2] R.P. Agarwal, M.A. El-Gebeily, D. O'Regan, Generalized in ##partially ordered metric space, Appl. Anal. 87(2008) 1-8 ##[3] M. Abbas, B. Rhoades, Common xed point results for non-##commuting mappings without continuity in generalized metric##spaces,Appl. Math. Comput. 215 (2009) 262-269.##[4] L.B. Ciric, A generalization of Banach's contraction principle, Proc.##Amer. Math. Soc. 45 (1974) 267-273.##[5] L.B. Ciric, Coincidence of xed points for maps on topological##spaces, Topology Appl. 154 (2007) 3100-3106.##[6] L.B. Ciric, S.N. Jsic, M.M. Milovanovic, J.S. Ume, On the steepest##descent approximation method for the zeros of generalized accretive##oprators,Nonlinear Anal-TMA.69 (2008) 763-769.##[7] B.C. Dhoage, Proving xed point theorems in D-metric spaces via##general existence principles,J. Pure Appl. Math. 34 (2003) 609-628.##[8] J.X. Fang, Y. Gao, Common xed point theorems under stric##contractive conditions in Menger space, Nonlinear Anal-TMA. 70##(2006) 184-193.##[9] T. Gnana Bhaskar, V. Lakshmikantham, J. Vasundhara Devi,##Monotone interativ technique for functional dierential equations##with retardation and anticipation, Nonlinear Anal-TMA.66 (2007)##12237-2242.##[10] T. Gnana Bhaskar, V. Lakshmikantham, Fixed point theorems in##partially ordered metric spaces and applications, Nonlinear Anal-##TMA. 65 (2006) 1379-1393.##[11] N. Hussain, Common xed point in best approximation for Banach##opaerator pairs with Ciric type I-contractions, J. Math. Anal. Appl.##338 (2008) 1351-1363.##[12] J.J. Nieto, R.R. Lopez, Existence and uniqueness of xed point##in partially ordered sets and applications to ordinary dierential##equations, Acta Math. Sin. Eng. Ser. 23 (2007) 2205-2212.##[13] D. O'Regan, R. Saadati, Nonlinear contraction theorems in##probabilistic spaces, Appl. Math. Comput. 195 (2008) 86-93.##[14] E. Firouz, S. J. Hosseini Ghoncheh, Common xed point theorem##for w-distance with new integral type contraction, Mathematics##Scientic Journal. 8 (2013) 33{39.##[15] H. Soleimani, S. M. Vaezpour, M. Asadi, Fixed point theorems and##their stability in metric trees, Mathematics Scientic Journal. 8##(2012) 109{116.##[16] J.J. Nieto, R. Rodriguez-Lopez, Contractive mapping theorems##in partally ordered sets and applications to ordinary dierential##eqquations, order. 22 (2005) 223-239.##[17] A.C.M. Ran, M.C.B. Reurings, A xed point theorem in partially##ordered sets and some applications to matrix equations, Proc. Amer.##Math. Soc. 132 (2004) 1435-1443.##[18] A. Petrusel, L.A. Rus, Fixed point theorems in ordered L-spaces,##Proc. Amer. Math. Soc. 134 (2006) 411-418.##[19] Z. Mustafa, B. Sims, A new approach to generalized metric spaces,##J. Nonlinear Convex Anal. 7 (2006) 289-297.##[20] Z. Mustafa, F. Awawded, W. Shantanawi, Fixed point theorem for##expansive mappings in G-metric spaces, Int. J. Contemp. Math.##Sciences. 5 (2010) 2463-2472.##[21] S. Manro, S.S. Bhatia, S. Kumar, Expansion mappings theorems in##G-metric spaces, J. Contemp. Math. Sciences. 5 (2010) 2529-2535.##[22] Z. Mustafa, T. Obiedat, F. Awawdeh, Some xed point theorems##for mapping on complete G-metric space, Fixed Point theory Appl.##12(2008) Article ID 189870.##[23] Z. Mustafa, B. Sims, Fixed point theorems for contractive mappings##in complete G-metric spaces, Fixed Point theory Appl. 10 (2009)##Article ID 917175.##[24] W. Shatanawi, Fixed point theory for contractive mappings##satisfying -maps in G-metric spaces, Fixed Point theory Appl. 9##(2010) Article ID 181650.##[25] L. Gajic, On a common xed point for sequence of selfmappings in##generalized metric space, J. Math. 36 (2006) 153-156.##[26] R. Saadati, S.M. Vaezpour, P. Vetro, B.E. Rhoades, Fixed point##theorems in generalized partially ordered G-metric spaces, Math.##Comput. Model. 52 (2010) 797-801.##[27] O. Kada, T. Suzuki, W. Takahashi, Nonconvex minimization##theorems and xed point theorems in complete metric space, Math.##Japonica. 44 (1996) 381-391.##[28] L. Gholizadeh, R. Saadati, W. Shatanawi S. M. Vaezpour,##Contractive mapping in generalized, ordered metric spaces with##application in integral equations, Math. Prob. Engineering. 2011##(2011) Article ID 380784.##[29] L. Gholizadeh, A xed point theorem in generalized ordered metric##spaces with its application, J. Nonlinear Sci. Appl. 6 (2013) 244{##]
The tanh method for solutions of the nonlinear modied Korteweg de Vries equation
The tanh method for solutions of the
nonlinear modied Korteweg de Vries
equation
2
2
In this paper, we have studied on the solutions of modied KdV equation andalso on the stability of them. We use the tanh method for this investigationand given solutions are good-behavior. The solution is shock wave and can beused in the physical investigations
1
In this paper, we have studied on the solutions of modied KdV equation andalso on the stability of them. We use the tanh method for this investigationand given solutions are good-behavior. The solution is shock wave and can beused in the physical investigations
47
54
Masoud
Karimi
مسعود
کریمی
دانشگاه آزاد واحد بجنورد ایران
دانشگاه آزاد واحد بجنورد ایران
Iran
karimim@bojnourdiau.ac.ir
New solution of fuzzy linear matrix equations
New solution of fuzzy linear matrix
equations
2
2
In this paper, a new method based on parametric form for approximate solu-tion of fuzzy linear matrix equations (FLMEs) of the form AX = B; where Ais a crisp matrix, B is a fuzzy number matrix and the unknown matrix X one,is presented. Then a numerical example is presented to illustrate the proposedmodel.
1
In this paper, a new method based on parametric form for approximate solu-tion of fuzzy linear matrix equations (FLMEs) of the form AX = B; where Ais a crisp matrix, B is a fuzzy number matrix and the unknown matrix X one,is presented. Then a numerical example is presented to illustrate the proposedmodel.
55
66
Mahmood
Otadi
محمود
اوتادی
دانشگاه آزاد بجنورد
دانشگاه آزاد بجنورد
Iran
otadi@iaufb.ac.ir
Application of variational iteration method for solving singular two point boundary value problem
Application of variational iteration method
for solving singular two point boundary
value problems
2
2
DEA methodology allows DMUs to select the weights freely, so in the optimalsolution we may see many zeros in the optimal weight. to overcome this prob-lem, there are some methods, but they are not suitable for evaluating DMUswith fuzzy data. In this paper, we propose a new method for solving fuzzyDEA models with restricted multipliers with less computation, and comparethis method with Liu''''''''[11]. Finally, by the proposed method, we evaluate a ex-ible manufacturing system with little computation, and then we compared thecomputational complexity of our proposed method with that of liu''''''''s method.
1
DEA methodology allows DMUs to select the weights freely, so in the optimalsolution we may see many zeros in the optimal weight. to overcome this prob-lem, there are some methods, but they are not suitable for evaluating DMUswith fuzzy data. In this paper, we propose a new method for solving fuzzyDEA models with restricted multipliers with less computation, and comparethis method with Liu''''''''[11]. Finally, by the proposed method, we evaluate a ex-ible manufacturing system with little computation, and then we compared thecomputational complexity of our proposed method with that of liu''''''''s method.
67
78
Mohsen
Rostamy-Malkhalifeh
محسن
رستمی مالخلیفه
دانشگاه آزاد علوم و تحقیقات تهران
دانشگاه آزاد علوم و تحقیقات تهران
Iran
H.
Saleh
ه
صالح
دانشگاه آزاد علوم و تحقیقات تهران
دانشگاه آزاد علوم و تحقیقات تهران
Iran
Evaluating the solution for second kind nonlinear Volterra Fredholm integral equations using hybrid method
Evaluating the solution for second kind
nonlinear Volterra Fredholm integral
equations using hybrid method
2
2
In this work, we present a computational method for solving second kindnonlinear Fredholm Volterra integral equations which is based on the use ofHaar wavelets. These functions together with the collocation method are thenutilized to reduce the Fredholm Volterra integral equations to the solution ofalgebraic equations. Finally, we also give some numerical examples that showsvalidity and applicability of the technique.
1
In this work, we present a computational method for solving second kindnonlinear Fredholm Volterra integral equations which is based on the use ofHaar wavelets. These functions together with the collocation method are thenutilized to reduce the Fredholm Volterra integral equations to the solution ofalgebraic equations. Finally, we also give some numerical examples that showsvalidity and applicability of the technique.
79
93
Ahamd
Shahsavaran
احمد
شهسواران
دانشگاه آزاد بروجرد ایران
دانشگاه آزاد بروجرد ایران
Iran
a.shahsavaran@iaub.ac.ir
Akbar
Shahsavaran
اکبر
شهسواران
دانشگاه آزاد اسلامی واحد بروجرد
دانشگاه آزاد اسلامی واحد بروجرد
Iran
Homological dimensions of complexes of R-modules
Homological dimensions of complexes of
R-modules
2
2
Let R be an associative ring with identity, C(R) be the category of com-plexes of R-modules and Flat(C(R)) be the class of all at complexes of R-modules. We show that the at cotorsion theory (Flat(C(R)); Flat(C(R))−)have enough injectives in C(R). As an application, we prove that for each atcomplex F and each complex Y of R-modules, Exti (F,X)= 0, whenever Ris n-perfect and i > n.
1
Let R be an associative ring with identity, C(R) be the category of com-plexes of R-modules and Flat(C(R)) be the class of all at complexes of R-modules. We show that the at cotorsion theory (Flat(C(R)); Flat(C(R))−)have enough injectives in C(R). As an application, we prove that for each atcomplex F and each complex Y of R-modules, Exti (F,X)= 0, whenever Ris n-perfect and i > n.
95
103
N.
Tayarzadeh
ن
طیارزاده
دانشگاه آزاد واحد گچساران ایران
دانشگاه آزاد واحد گچساران ایران
Iran
Esmaiel
Hosseini
اسمعیل
حسینی
دانشگاه آزاد واحد گچساران ایران
دانشگاه آزاد واحد گچساران ایران
Iran
esmaeilmath@gmail.com
Sh.
Niknejad
َش
نیک نژاد
دانشگاه آزاد واحد گچساران
دانشگاه آزاد واحد گچساران
Iran
[[1] M. Ansari and E. Hosseini, The behavior of homological##dimensions, Mathematics Scientic Journal Vol.7, No. 1, (2011),##[2] S. E. Dickson, A torsion theory for abelian categories, Trans.##Amer. Math. Soc. 121, (1966), 223-235.##[3] E. Enochs, J. Garca Rozas, Flat covers of complexes, J. Algebra,##210,(1998), 86-102.##[4] P. Eklof, J. Trlifaj, How to make Ext vanish, Bull. London##Math. Soc, 33, no. 1 (2001), 44-51.##[5] R. Gobel, S. Shelah, Cotorsion theories and spliters, Trans.##Amer. Math. Soc. 352, No. 11, (2000), 5357-5379.##[6] L. Salce, Cotorsion theories for abelian groups, Symposia ##Mathematica, Vol. XXIII (Conf. Abelian Groups and their##Relationship to the Theory of Modules, INDAM, Rome, 1977),##Academic Press, London, 1979, pp.11-32. 11.##[7] D. Simson, A remark on projective dimension of at modules,##Math. Ann. 209 (1974), 181-182.##]
A note on positive deniteness and stability of interval matrices
A note on positive deniteness and
stability of interval matrices
2
2
It is proved that by using bounds of eigenvalues of an interval matrix, someconditions for checking positive deniteness and stability of interval matricescan be presented. These conditions have been proved previously with variousmethods and now we provide some new proofs for them with a unity method.Furthermore we introduce a new necessary and sucient condition for checkingstability of interval matrices.
1
It is proved that by using bounds of eigenvalues of an interval matrix, someconditions for checking positive deniteness and stability of interval matricescan be presented. These conditions have been proved previously with variousmethods and now we provide some new proofs for them with a unity method.Furthermore we introduce a new necessary and sucient condition for checkingstability of interval matrices.
105
113
Hana
Veiseh
هانا
ویسه
دانشگاه آزاد واحد همدان
دانشگاه آزاد واحد همدان
Iran
veisehana@yahoo.com
[[1] J. Rohn, Checking positive deniteness or stability of symmetric##interval matrices is NP-hard, Commentationes Mathematicae##Universitatis Carolinae. 35 (1994) 795{797.##[2] J. Rohn, Checking properties of interval matrices, Technical Report##686, Institute of Computer Science, Academy of Sciences of the##Czech Republic, Prague, September 1996.##[3] R. Farhadsefat, T. Lot, J. Rohn, A note on regularity and positive##deniteness of interval matrices, Cent. Eur. J. Math. 10(1) (2012)##[4] M. Mansour, Robust stability of interval matrices, Proceeding of the##28th Conference on Decision and Control, Tampa, FL. (1989) 46{51.##[5] J. Rohn, A Handbook of Results on Interval Linear Problems,##Prague: Czech Academy of Sciences, 2005.##[6] J. Rohn, Positive deniteness and stability of interval matrices,##SIAM J. Matrix Anal. Appl. 15(1) (1994) 175{184.##[7] S. Poljak, J. Rohn, Checking roboust nonsingularity is NP-hard,##Math. Control Signals Syst. 6(1) (1993) 1{9.##[8] A. S. Deif, The interval eigenvalue problem, Z. Angew. Math. Mech.##71(1) (1991) 61{64.##[9] M. Hladik, D. Daney, E. P. Tsigaridas, Bounds on real eigenvalues##and singular values of interval matrices, SIAM J. Matrix Anal. Appl.##31(4) (2010) 2116{2129. ##[10] J. Rohn, Bounds on eigenvalues of interval matrices, ZAMM, Z.##Angew. Math. Mech. 78(Suppl. 3) (1998) S1049{S1050.##[11] J. Rohn, Interval matrices: Singularity and real eigenvalues, SIAM##Journal on Matrix Analysis and Applications. 14(1) (1993) 82{91.##[12] J. Rohn, A. Deif, On the range of eigenvalues of an interval matrix,##Comput. 47(3-4) (1992) 373{377.##[13] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge:##Cambridge University Press, 1985.##[14] J. Stoer and R. Bulrisch, Introduction to Numerical Analysis,##Springer-Verlag, Berlin, 1980.##]
A numerical solution of a Kawahara equation by using Multiquadric radial basis function
A numerical solution of a Kawahara
equation by using Multiquadric radial basis
function
2
2
In this article, we apply the Multiquadric radial basis function (RBF) interpo-lation method for nding the numerical approximation of traveling wave solu-tions of the Kawahara equation. The scheme is based on the Crank-Nicolsonformulation for space derivative. The performance of the method is shown innumerical examples.
1
In this article, we apply the Multiquadric radial basis function (RBF) interpo-lation method for nding the numerical approximation of traveling wave solu-tions of the Kawahara equation. The scheme is based on the Crank-Nicolsonformulation for space derivative. The performance of the method is shown innumerical examples.
115
125
M.
Zarebnia
م
ضارب نیا
دانشگاه محقق اردبیلی
دانشگاه محقق اردبیلی
Iran
zarebnia@uma.ac.ir
M.
Takhti
م.
تختی
دانشگاه محقق اردبیلی
دانشگاه محقق اردبیلی
Iran
[[1] J.K. Hunter, J. Scheurle, Existence of perturbed solitary wave##solutions to a model equation for water waves, Physica D 32 (1988)##[2] T. Kawahara, Oscillatory solitary waves in dispersive media, J. Phys.##Soc. Japan 33(1) (1972) 260-264.##[3] B.I. Cohen, J.A. Krommes, W.M. Tang, M.N. Rosenbluth, Non-linear##saturation of the dissipative trapped ion mode by mode coupling, Nucl.##Fusion 16 (1976) 971{992.##[4] Y. Kuramoto, Diusion induced chaos in reactions systems, Progr.##Theoret. Phys. Suppl. 64 (1978) 346{367. ##[5] G.I. Sivashinsky, Nonlinear analysis of hydrodynamic instability##in laminar ames, Part I. Derivation of basic equations, Acta##Astronautica 4 (1977) 1176{1206.##[6] G.I. Sivashinsky, On ame propagation under conditions of##stoichiometry, SIAM J. Appl. Math. 39 (1980) 67{82.##[7] D.J. Benney, Long Waves in Liquid lms, J. Math. Phys. 45 (1966)##[8] A.P. Hooper, R. Grimshaw, Nonlinear instability at the interface##between two uids, Phys. Fluids 28 (1985) 37{45.##[9] A.V. Coward, D.T. Papageorgiou, Y.S. Smyrlis, Nonlinear stability##of oscillatory coreannular fow: A generalized Kuramoto-Sivashinsky##equation with time periodic coecients, Zeit. Angew. Math. Phys.##(ZAMP) 46 (1995) 1{39.##[10] S.G. Rubin, R.A. Graves, Cubic spline approximation for problems##in uid mechanics, NASA TR R-436, Washington, DC (1975).##[11] W.R. Madych, Miscellaneous error bounds for multiquadrics and##related interpolants, Comput. Math. Appl. 24(12) (1992) 121{38.##[12] W.R. Madych, SA. Nelson Multivariate interpolation and##conditionally positive denite functions ii, Math. Comput. 54 (1990)##[13] Z. Wu, R. Shaback, Local error estimates for radial basis function##interpolation of scaterred data, IMA J. Num. Anal. 13 (1993) 13{27.##[14] R.L. Hardy, Multiquadric equations of topography and other##irregular surfaces, Geophys Res 176 (1971) 1905{1915.##[15] R.L. Hardy, Theory and applications of the multiquadricbiharmonic##method: 20 years of discovery, Comput. Math. Applic. 19 (1990) 163{##[16] E.M.E. Zayed, Kh. A. Gepreel, A generalized (G'/G)-expansion##method for nding traveling wave solutions of coupled nonlinear##evolution equations, Mathematics Scientic Journal 6 (2010) 97{114.##]