ORIGINAL_ARTICLE
On the modification of the preconditioned AOR iterative method for linear system
In this paper, we will present a modification of the preconditioned AOR-type method for solving the linear system. A theorem is given to show the convergence rate of modification of the preconditioned AOR methods that can be enlarged than the convergence AOR method.
http://msj.iau-arak.ac.ir/article_515069_6a6eee18e305f146a25949f33895cd52.pdf
2013-04-01T11:23:20
2018-05-26T11:23:20
1
12
H.
Almasieh
halmasieh@yahoo.co.uk; h.almasieh@khuisf.ac.ir
true
1
دانشگاه آزاد اصفهان. خوراسگان
دانشگاه آزاد اصفهان. خوراسگان
دانشگاه آزاد اصفهان. خوراسگان
AUTHOR
S
Gholami
true
2
دانشگاه آزاد خوراسگان
دانشگاه آزاد خوراسگان
دانشگاه آزاد خوراسگان
AUTHOR
[1] A. Berman, R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic
1
Press, New York, 1979.
2
[2] A. D. Gunawardena, S. K. Jain, L. Snyder, Modified iterative methods for consistent linear
3
systems, Lin. Alg. Appl. 154-156 (1991) 123-143.
4
[3] A. Hadjidimos, Accelerated overrelaxation method, Appl. Math. Comput. 32 (1978) 149–
5
[4] T. Kohno, H. Kotakemori, Improving the modified Gauss-Seidel method for Z-matrices,
6
Lin. Alg. Appl. 267 (1997) 113-123.
7
[5] H. Kotakemori, H. Niki, N. Okamoto, Accelerated iterative method for Z-matrices, J.
8
Comput. App. Math. 75 (1996) 87-97.
9
[6] J. Li, T. Z. Huang, Preconditioned Methods of Z-matrices, Acta. Math. Sci. 25 (2005) 5-10.
10
[7] W. Li, W. W. Sun, Modified Gauss-Seidel type methods and Jacobi type methods for Z-
11
matrices, Lin. Alg. Appl. 317 (200) 227-240.
12
[8] Y. Z. Song, Comparisons of nonnegative splittings of matrices, Lin. Alg. Appl. 154-156
13
(1991) 433-455.
14
[9] Y. Z. Song, Comparison theorems for splittings of matrices, Num. Math. 92 (2002) 563-
15
[10] R. S.Varga, Matrix iterative analysis, prentice-hall, Englewood Cliffs, NJ, 1962; Springer
16
series in computational mathematics, 27, Speringer-Verlag, Berlin,2000.
17
[11] G. Wang, N. Zhang, F. Tan, A new preconditioned AOR method for Z-matrices, Wor.
18
Aca. Sci. Engin. Tech. 67 ( 2010) 572-574.
19
[12] M. Wu, L.Wang, Y.Song, Preconditioned AOR iterative method for linear systems, Appl.
20
Num. Math. 57 (2007) 672-685.
21
[13] D. M. Young, Iterative solution of large linear systems, Academic Press,
22
New York, 1971.
23
[14] Y. Zhang, T. Z. Huang, X. Liu, Gauss type preconditioning techniques for linear system,
24
Appl. Math. Comput. 188 (2007) 612-633.
25
ORIGINAL_ARTICLE
(Fixed Point Type Theorem In S-Metric Spaces (II
In this paper, we prove some common fixed point results for two self mappingsf and g on S-metric space such that f is a g.w.c.m with respect to g.
http://msj.iau-arak.ac.ir/article_514457_140d75be088485a4126587da655b731d.pdf
2013-04-01T11:23:20
2018-05-26T11:23:20
57
68
جواد
مجردی افرا
true
1
آر آی
آر آی
آر آی
LEAD_AUTHOR
ORIGINAL_ARTICLE
Interpolation of the tabular functions with fuzzy input and fuzzy output
In this paper, rst a design is proposed for representing fuzzy polynomials withinput fuzzy and output fuzzy. Then, we sketch a constructive proof for existenceof such polynomial which can be fuzzy interpolation polynomial in a set given ofdiscrete points rather than a fuzzy function. Finally, to illustrate some numericalexamples are solved.
http://msj.iau-arak.ac.ir/article_515066_91f9619b3ccac3551b042479be15432c.pdf
2013-04-01T11:23:20
2018-05-26T11:23:20
13
26
مهران
چهلابی
chehlabi@yahoo.com
true
1
دانشگاه آزاد سواد کوه یزد
دانشگاه آزاد سواد کوه یزد
دانشگاه آزاد سواد کوه یزد
LEAD_AUTHOR
[1] L. A. Zadeh, Fuzzy sets, Inform. Control (8), (1965), 338-353.
1
[2] R. Lowen, A Fuzzy Lagrange interpolation theorem, Fuzzy Sets Syst. 34
2
(1990) 33-34.
3
[3] O. Kaleva, Interpolation of fuzzy data, Fuzzy Sets and Syst. 61 (1994)
4
[4] S. Abbasbandy, E. Rabolian, Interpolation of fuzzy data by natural
5
splines, J. Appl. Math. Comput. 5 (1998) 457-463.
6
[5] S. Abbasbandy, Interpolation of fuzzy data by complete splines, J. Appl.
7
Math. Comput. 8 (2001) 587-594.
8
[6] S. Abbasbandy, M. Amirfakhrian, Numerical approximation of fuzzy
9
functions by fuzzy polynomials, Applied, Mathematics and computation
10
174 (2006) 1001-1006.
11
[7] S. Abbasbandy, M. Amirfakhrian, A new approach to universal
12
appriximation of fuzzy functions on a discrete set of points, Applied
13
Mathematical Modelling 30 (2006) 1525-1534.
14
[8] J. Gati, B. Bede, Spline appriximation of fuzzy functions, International
15
conference on Applied Mathematics, (2005), 194-199.
16
[9] D. Dubois, H. Prade, Fuzzy sets and Systems:Theory and Application,
17
Academic Press, New York, 1980.
18
ORIGINAL_ARTICLE
The combined Sinc-Taylor expansion method to solve Abel's integral equation
In this paper , numerical solotion of Abel's integral equationby using the Taylor expanssion of the unknown functionvia collection method based on Sinc is considered...
http://msj.iau-arak.ac.ir/article_515031_fede9c646b4f34a13a3760948d1432f9.pdf
2013-04-01T11:23:20
2018-05-26T11:23:20
27
39
م
فریبرزی عراقی
true
1
دانشگاه آزاد واحد تهران مرکز
دانشگاه آزاد واحد تهران مرکز
دانشگاه آزاد واحد تهران مرکز
AUTHOR
ق
کاظمی گلیان
kazemigelian@yahoo.com
true
2
دانشگاه آزاد واحد شیراز
دانشگاه آزاد واحد شیراز
دانشگاه آزاد واحد شیراز
LEAD_AUTHOR
ORIGINAL_ARTICLE
A new non-parametric approach for suppliers selection
In this paper we propose a simple non-parametric model for multiple crite-ria supplier selection problem. The proposed model does not generate a zeroweight for a certain criterion and ranks the suppliers without solving the modeln times (one linear programming (LP) for each supplier) and therefore allowsthe manager to get faster results. The methodology is illustrated using anexample.
http://msj.iau-arak.ac.ir/article_515789_178b5d607b4ef06215274aca08cedafe.pdf
2013-04-01T11:23:20
2018-05-26T11:23:20
41
55
A.
Hadi-Vencheh
ahadi@khuisf.ac.ir
true
1
Islamic Azad University, Khorasgan Branch, Isfahan, Iran.
Islamic Azad University, Khorasgan Branch, Isfahan, Iran.
Islamic Azad University, Khorasgan Branch, Isfahan, Iran.
LEAD_AUTHOR
M.
Niazi-Motlagh
true
2
Islamic Azad University, Khorasgan Branch, Isfahan, Iran.
Islamic Azad University, Khorasgan Branch, Isfahan, Iran.
Islamic Azad University, Khorasgan Branch, Isfahan, Iran.
AUTHOR
[1] C. Araz and I. Ozkarahan, Supplier evaluation and management system
1
for strategic sourcing based on a new multicriteria sorting procedure,
2
International Journal of Production Economics, 106 (2007), 585{606.
3
[2] A. F. Gunery, A. Yucel and G. Ayyildiz, An integrated fuzzy-LP approach
4
for a supplier selection problem in supply chain management, Expert
5
System with Applications, 36 (2008), 9223{9228.
6
[3] F. Liu, F. Y. Ding and V. Lall , Using data envelpment analysis to
7
compare suppliers for supplier selection and performance improvement,
8
Supply Chain Management, 5 (2000), 143{150.
9
[4] A. Mandal and S. G. Deshmukh, Vendor selection using interpretive
10
structural modelling (ISM), International Journal of Operations and
11
Production Management, 14 (1994), 52{59.
12
[5] W. L. Ng, An ecient and simple model for multiple criteria supplier
13
selection problem, European Journal of Operational Research, 186 (2008),
14
1059{1067.
15
[6] J. Seydel, Supporting the paradigm shift in vendor selection: Multicriteria
16
methods for sole sourcing, Managerial Finance, 31 (2005), 49{64.
17
[7] R. J. Vokurka, J. Choobineh and L. Vadi, A prototype expert system for
18
the evaluation and selection of potential suppliers, International Journal
19
of Operations and Production Management, 16 (1996), 106-127.
20
[8] C. A. Weber, A data envelopment analysis approach to measuring vendor
21
performance, Supply Chain Management, 1 (1996), 28{39.
22
[9] C. A. Weber, J. R. Current and A. Desai, Non-cooperative negotiation
23
strategies for vendor selection, European Journal of Operational Research,
24
108 (1998), 208{223.
25
[10] C. A. Weber, J. R. Current and A. Desai, An optimization approach to
26
determining the number of vendors to employ, Supply Chain Management,
27
5 (2000), 90{98.
28
[11] D. J. Zhang, K. Zhang, K. Lai and Y. Lu, An novel approach to
29
supplier selection based on vague sets group decision, Expert System with
30
Applications, 36 (2009), 9557{9563.
31
ORIGINAL_ARTICLE
New Integral Transform for Solving Nonlinear Partial Dierential Equations of fractional order
In this work, we have applied Elzaki transform and He's homotopy perturbation method to solvepartial dierential equation (PDEs) with time-fractional derivative. With help He's homotopy per-turbation, we can handle the nonlinear terms. Further, we have applied this suggested He's homotopyperturbation method in order to reformulate initial value problem. Some illustrative examples aregiven in order to show the ability and simplicity of the approach. All numerical calculations in thismanuscript were performed on a PC applying some programs written in Maple.
http://msj.iau-arak.ac.ir/article_515790_f2f9b8d82c2aee40719a149bbc38df13.pdf
2013-04-01T11:23:20
2018-05-26T11:23:20
69
86
A.
Neamaty
namaty@umz.ac.ir
true
1
Department of Mathematics, University of Mazandaran, Babolsar, Iran
Department of Mathematics, University of Mazandaran, Babolsar, Iran
Department of Mathematics, University of Mazandaran, Babolsar, Iran
LEAD_AUTHOR
B.
Agheli
true
2
Department of Mathematics, Qaemshahr Branch, Islamic Azad University,
Qaemshahr, Iran
Department of Mathematics, Qaemshahr Branch, Islamic Azad University,
Qaemshahr, Iran
Department of Mathematics, Qaemshahr Branch, Islamic Azad University,
Qaemshahr, Iran
AUTHOR
R.
Darzi
true
3
Department of Mathematics, Neka Branch, Islamic Azad University, Neka,
Iran
Department of Mathematics, Neka Branch, Islamic Azad University, Neka,
Iran
Department of Mathematics, Neka Branch, Islamic Azad University, Neka,
Iran
AUTHOR
[1] J.H. He, Homotopy perturbation technique, Computer Methods in Applied
1
Mechanics and Engineering, 178 (3-4) (1999), pp. 257{262.
2
[2] E. Babolian, A. Azizi, J. Saeidian , Some notes on using the homotopy
3
perturbation method for solving time-dependent dierential equations,
4
Mathematical and Computer Modelling, 50 ( 2009), pp. 213{224.
5
[3] S. Abbasbandy, Iterated He's homotopy perturbation method for quadratic
6
Riccati dierential equation, Journal of Computational and Applied
7
Mathematics, 175 (2006), pp. 581{589.
8
[4] Z. Odibat, Shaher Momani, The variational iteration method: an ecient
9
scheme for handling fractional partial dierential equations in uid
10
mechanics, Computers and Mathematics with Applications, 58 (2009),
11
pp. 2199{2208.
12
[5] G.M. Mophou, Existence and uniqueness of mild solutions to impulsive
13
fractional dierential equations, Nonlinear Analysis: Theory, Methods and
14
Applications, 72 (2010), pp. 1604{1615.
15
[6] F. Huang, F. Liu, The time fractional diusion and fractional advection-
16
dispersion equation, ANZIAM, 46 (2005), pp. 1{14.
17
[7] D. Taka^ci, A. Taka^ci, M.^Strboja, On the character of operational solutions
18
of the time-fractional diusion equation, Nonlinear Analysis: Theory,
19
Methods and Applications, 72 (2010), pp. 2367{2374.
20
[8] C. Xue, J. Nie, W. Tan, An exact solution of start-up ow for the fractional
21
generalized Burgers' uid in a porous half-space, Nonlinear Analysis:
22
Theory, Methods and Applications, 69 (2008), pp. 2086{2094.
23
[9] S. Guo, L. Mei, Y. Fang, Z. Qiu, Compacton and solitary pattern solutions
24
for nonlinear dispersive KdV-type equations involving Jumarie's fractional
25
derivative, Physics Letters A, 376 (2012), pp. 158{164.
26
[10] S. Guo, L. Mei, Y. Ling, Y. Sun, The improved fractional sub-equation
27
method and its applications to the space-time fractional dierential equations
28
in uid mechanics, Physics Letters A, 376 (2012), pp. 407{411.
29
[11] Y. Liu, Variational homotopy perturbation method for solving fractional
30
initial boundary value problems, Abstract and Applied Analysis, 2012
31
(2012), http://dx.doi.org/10.1155/2012/727031.
32
[12] T. M. Elzaki and S. M. Elzaki, Application of New Transform "Elzaki
33
Transform" to Partial Dierential Equations, Global Journal of Pure and
34
Applied Mathematics, 1 (2011), pp. 65{70.
35
[13] J. Zhang, A Sumudu based algorithm for solving dierential equations,
36
Computational Science Journal Moldova, 15(3), pp. 303 { 313.
37
[14] H. Eltayeb and A. kilicman, A Note on the Sumudu Transforms and
38
dierential Equations, Applied Mathematical Sciences, 4 (2010), pp. 1089{
39
[15] T. Elzaki, S. M. Elzaki, and E. M. A. Hilal, Elzaki and Sumudu Transforms
40
for Solving Some Dierential Equations, Global Journal of Pure and
41
Applied Mathematics, 8 (2012), pp. 167{173.
42
[16] I. Podlubny, Fractional dierential equations, Academic Press, San Diego,
43
CA, (1999).
44
[17] Tarig M. Elzaki, Salih M. Elzaki, and Eman M. A. Hilal, Elzaki and
45
Sumudu Transforms for Solving Some Dierential Equations, Global
46
Journal of Pure and Applied Mathematics, ISSN 0973-1768, Volume 8,
47
Number., 2 (2012), pp. 167{173.
48
[18] Z. Odibat, S. Momani, Numerical methods for nonlinear partial dierential
49
equations of fractional order, Applied Mathematical Modelling, 32 (2008),
50
pp. 28{39.
51
ORIGINAL_ARTICLE
Positive Solution for Boundary Value Problem of Fractional Dierential Equation
In this paper, we prove the existence of the solution for boundary value prob-lem(BVP) of fractional dierential equations of order q 2 (2; 3]. The Kras-noselskii's xed point theorem is applied to establish the results. In addition,we give an detailed example to demonstrate the main result.
http://msj.iau-arak.ac.ir/article_515791_efd4146742c560b34ab2d953f48230c2.pdf
2013-04-01T11:23:20
2018-05-26T11:23:20
87
98
H.
Qu
qhaidong@163.com
true
1
Department of Mathematics and Information, Hanshan Normal University,
Chaozhou, Guangdong, 521041, P.R. China
Department of Mathematics and Information, Hanshan Normal University,
Chaozhou, Guangdong, 521041, P.R. China
Department of Mathematics and Information, Hanshan Normal University,
Chaozhou, Guangdong, 521041, P.R. China
LEAD_AUTHOR
[1] N. Kosmatov, A singular boundary value problem for nonlinear dierential
1
equations of fractional order, J. Appl. Math. Comput. 29(2009), 125-135.
2
[2] S. Zhang, Positive solutions for boundary value problem of nonlinear
3
fractional dierential equations, Electric. J. Di. Equs. 36 (2006),1-12.
4
[3] A. P. Chen, Y. S. Tian, Existence of Three Positive Solutions to
5
Three-Point Boundary Value Problem of Nonlinear Fractional Dierential
6
Equation, Dier. Equ. Dyn. Syst. 18 (2010), 327-339.
7
[4] A.A. Kilbsa, H. M. Srivastava, J.J. Trujillo. Theory and Applications of
8
Fractional Dierential Equations, Elsevier, Amsterdam, 2006.
9
[5] S. Q. Zhang, Existence results of positive solutions to boundary value
10
problem for fractional dierential equation, ,Positivity 13(2009), 583-599.
11
[6] S. Zhang, The existence of a positive solution for a nonlinear fractional
12
dierential equation, J. Math. Anal. Appl. 252 (2000), 804-812.
13
[7] S. Zhang, Positive solution for some class of nonlinear fractional
14
dierential equation, J. Math. Anal. Appl. 278 (2003), 136-148.
15
[8] M. Benchohra, J. Henderson, S.K. Ntouyas, A. Ouahab, Existence results
16
for fractional order functional dierential equations with innite delay, J.
17
Math. Anal. Appl. 338 (2008), 1340-1350.
18
[9] D.J. Guo, L. Lakshmikantham, Nonlinear Problems in Abstract Cones,
19
Academic Press, New York, 1988.
20
ORIGINAL_ARTICLE
Transversal spaces and common fixed point Theorem
In this paper we formulate and prove some xed and common xed pointTheorems for self-mappings dened on complete lower Transversal functionalprobabilistic spaces.
http://msj.iau-arak.ac.ir/article_515792_0ed78355bfe5c4559db9fe178a19aa1b.pdf
2013-04-01T11:23:20
2018-05-26T11:23:20
99
108
Sh
Rezaei
sh_rezaei88@yahoo.com
true
1
Department of Mathematic, Islamic Azad University, Aligudarz Branch,
Aligudarz, Lorestan, Iran.
Department of Mathematic, Islamic Azad University, Aligudarz Branch,
Aligudarz, Lorestan, Iran.
Department of Mathematic, Islamic Azad University, Aligudarz Branch,
Aligudarz, Lorestan, Iran.
LEAD_AUTHOR
[1] A. George, P. Veeramani, On some results in Fuzzy metric spaces Fuzzy
1
sets and systems, 64 (1994), 395-399.
2
[2] S. N. Jesic, N. A. Babacev, Common xed point on Transversal
3
probabilistic spaces, Math. Moravica, 6 (2002), , 71-76.
4
[3] S. N. Jesic, M. R. Taskovic, N. A. Babacev, Transversal spaces and xed
5
point Theorems, Applicable analysis and discrete Mathematics, 1 (2007),
6
[4] S. Kutukcu, S. Sharma, H. Tokgoz, A xed point Theorem in Fuzzy metric
7
spaces, Int. J. Math. Anal, 1 (2007), 861-872.
8
[5] M. R. Tascovic, Transversal spaces, Math. Moravica, 2 (1998), 133-142.
9
ORIGINAL_ARTICLE
A numerical solution of Nagumo telegraph equation by Adomian decomposition method
In this work, the solution of a boundary value problem is discussed via asemi analytical method. The purpose of the present paper is to inspect theapplication of the Adomian decomposition method for solving the Nagumotelegraph equation. The numerical solution is obtained for some special casesso that demonstrate the validity of method.
http://msj.iau-arak.ac.ir/article_515793_7f0f553980202f55773872b8c8e0604c.pdf
2013-04-01T11:23:20
2018-05-26T11:23:20
109
120
H.
Rouhparvar
rouhparvar59@gmail.com
true
1
Department of Mathematics, Islamic Azad University, Saveh-Branch, Saveh
39187/366, Iran.
Department of Mathematics, Islamic Azad University, Saveh-Branch, Saveh
39187/366, Iran.
Department of Mathematics, Islamic Azad University, Saveh-Branch, Saveh
39187/366, Iran.
LEAD_AUTHOR
1] T. A. Abassy, Improved Adomian decomposition method, Comput. Math.
1
Appl. 9 (2010), 42{54.
2
[2] S. Abbasbandy, Soliton solutions for the Fitzhugh-Nagumo equation with
3
the homotopy analysis method, Appl. Math. Model., 32 (2008), 2706{2714.
4
[3] S. Abbasbandy, A Numerical solution of Blasius equation by Adomian's
5
decomposition method and comparison with homotopy perturbation
6
method, Chaos, Solitons and Fractals, 31 (2007), 257{260.
7
[4] S. Abbasbandy, Improving Newton-Raphson method for nonlinear
8
equations by modied Adomian decomposition method, Appl. Math.
9
Comput. 145 (2004), 887{893.
10
[5] S. Abbasbandy, M.T. Darvish, A numerical solution of Burger's equation
11
by modied Adomian method, Appl. Math. Comput. 163 (2005), 1265{
12
[6] H.A. Abdusalam, E.S. Fahmy, Cross-diusional eect in a telegraph
13
reaction diusion Lotka-Volterra two competitive system, Chaos, Solitons
14
& Fractals, 18 (2003), 259{264.
15
[7] H. A. Abdusalam, Analytic and approximate solutions for Nagumo
16
telegraph reaction diusion equation, Appl. Math. Comput. 157 (2004),
17
[8] G. Adomain, Solving frontier problems of physics: The decomposition
18
method, Kluwer Academic Publishers, Boston, 1994.
19
[9] G. Adomian, Nonlinear stochastic operator equations, Academic Press,
20
[10] G. Adomian, A review of the decomposition method in applied
21
mathematics, J. Math. Anal. Appl. 135 (1998), 501{544.
22
[11] G. Adomian, Y. Charruault, Decomposition method-A new proof of
23
convergency, Math. Comput. Model. 18 (1993), 103{106.
24
[12] E. Ahmed, H. A. Abdusalam, E. S. Fahmy, On telegraph reaction diusion
25
and coupled map lattice in some biological systems, Int. J. Mod. Phys C,
26
2 (2001), 717{723.
27
[13] E. Babolian, J. Biazar, Solution of a system of nonlinear Volterra integral
28
equations by Adomian decomposition method, Far East J. Math. Sci. 2
29
(2000), 935{945.
30
[14] E. Babolian, Sh. Javadi, H. Sadeghi, Restarted Adomian method for
31
integral equations, Appl. Math. Comput. 153 (2004), 353{359.
32
[15] S. A. El-Wakil, M. A. Abdou, New applications of Adomian decomposition
33
method, Chaos, Solitons and Fractals 33 (2007), 513{522.
34
[16] A. C. Metaxas, R. J. Meredith, Industrial microwave, heating, Peter
35
Peregrinus, London, 1993.
36
[17] N. Ngarhasts, B. Some, K. Abbaoui, Y. Cherruault, New numerical study
37
of Adomian method applied to a diusion model, Kybernetes 31 (2002),
38
[18] W. Liu, E. Van Vleck, Turning points and traveling waves in FitzHugh-
39
Nagumo type equations, J. Di. Eq. 2 (2006), 381{410.
40
[19] G. Roussy, J. A. Pearcy, Foundations and industrial applications of
41
microwaves and radio frequency elds, John Wiley, New York, 1995.
42
[20] R. A. Van Gorder, K. Vajravelu, A variational formulation of the Nagumo
43
reaction-diusion equation and the Nagumo telegraph equation, Nonlinear
44
Analysis: Real World Applications 4 (2010), 2957{2962.
45